814 resultados para Matéria prima


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Among the sugar cane potential uses include those related to the extraction of products and byproducts from the stalk. The sugarcane flowering causes morphological and physiological changes in plant and in the presence of pith, promotes changes in the stalk, reducing the raw matter quality. Most of the areas planted with sugarcane in the South-Central region of Brazil are subject to flowering, however, this feature varies depending on the variety used. There are different pith diameters related to the flowered or induced stalks, and damage to the raw matter quality are still controversial. The objective of this experiment was to evaluate the response of cane sugar varieties in relation to the flowering, pith and chemical and technological parameters, and their relationship with the pith degree. The experimental design was a completely randomized with sis treatments (varieties: IAC91-1099-4004IAC94, IAC95-5000, SP81-3250, CTC and RB855536 15) and three replications. Were evaluated the flowering, based on morphological changes in the apical bud, the pith intensity by the percentage determination of internodes occupied by whitish and spongy tissues and and pith diameter, by measuring the diameters of the changes in the internodes, expressed in percentage, in addition to chemical (juice total acidity) and technological (fiber, reducing sugars and sugar cane Pol) parameters. The flowering occurrences were accompanied by higher pith intensity. The flowering induction contributed to the lower raw matter quality, although the pith volume was lower. The pith and flowering did not affected the sugarcane sucrose content. Increases in levels of fiber, sugars and acidity were observed only in cases where the diameter of the area spongeous exceeded 50% of stalk diameter. The variety that had the best and worse response was RB855536 and CTC 15, respectively.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The use of sewage sludge as a raw material falls within the waste recycling key in the current process model environmental sustainability .Waste recycling has been consolidated as a sustainable environmentally sound technical solution, and. Despite showing very variable composition and characteristics, sewage sludge, can be considered as a residue with a high recycling potential in the building sector. In this paper the feasibility of using sewage sludge ash was studied in addition to Portland cement mortar in 1:3 mass considered the standard dash. This gray additions were studied in proportions of 5%, 10 %, 15 %, 20 %, 25% and 30% by mass of cement. The methodology was focused on the characterization of materials by physical, chemical , mechanical , environmental and morphological followed by the production of mortar tests ,and finalized by the characterization tests of mortar in the fresh state, through the consistency index, content of entrained air, bulk density and water retention, and in the hardened state by bulk density, water absorption by capillarity capillarity coefficient, compressive strength, tensile strength in bending ,tensile bond strength and microstructural analysis for percentages of 0 to 20%. After comparing with the standard mortar mortars with addition of ash, it is concluded that the ash of sewage sludge did not impair the integrity and properties of mortars with addition, including increasing resistance to compression and tension, being 20% more indicated percentage. Thus, it becomes feasible the addition of sewage sludge ash in Portland cement mortar for the trait studied

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This study aimed to assess the Cleaner Production CP as corporate sustainable tool, through the multiple case studies within companies from Rio Grande do Norte State. In order to achieve this goal a research methodology approach was set. The initial stage of the research methodology was based on a literature review on which it was observed that the CP can be linked with corporate sustainable once it prevents pollution and reduces the operational risks among employees, community and environment. In addition, CP can useful for companies position within competitive position as well as being applied to process, products and services. In order to observe these factors, CP was used within food industry (Company 1), textile industry (Company 2) and in a car dealer (Company 3). Regarding the results, Company 1 changed its raw material as well as implementing housekeeping (control use of water, energy and condensed milk). In Company 2, it was observed the three levels of CP. In other words, housekeeping (e.g. cutting process and manipulation of chemical products), changing technology (high pressure washing machine) and internal and external recycling. In addition, Company 3 considered only level 3 external recycling. As consequence, it was observed that can be applied either within industry as well as service sector. Unfortunately, it was not possible to observe any social gains on a monetary basis. This is due to limitations of the CP methodology and study complexity. Therefore, it was observed improvements regarding to social, environmental and economic areas. Nevertheless, it is necessary more commitment from top level management in order to consider CP like effective sustainable tool

Relevância:

60.00% 60.00%

Publicador:

Resumo:

As a contemporary tendency, it is been evidenced that the environmental changes theme, already admitted as a concernment to international economical and political reality, is also gaining repercussion on industrial and business sector. Firms are implementing actions on trial to minimize their own greenhouse gases (GHG) emissions impacts. However, the great majority of those actions of Corporative Social-Environmental Responsibility (CSR) are referred only to direct emissions of the main production systems. Direct emissions are those derived of an isolate process, without considering the upstream and downstream processes emissions, which respond for the majority of emissions originated because of respective firm‟s production system existence. Because the greenhouse effect occurs globally and the GHG emissions contribute to the environmental changes independently of their origin, it must be taken into account the whole productive life cycle of products and systems, since the energy invested on resources extraction and necessary materials to the final disposal. To do so, it must be investigated all relevant steps of a product/production system life cycle, tracking all activities which emit greenhouse gases, directly or indirectly. This amount of emissions consists in the firm‟s Carbon Footprint. This research purpose is to defend the Carbon Footprint relevance and its adoption viability to be used as an Environmental Indicator on measurement/assessment of CSR. It has been realized a study case on Petrobras‟s seat unity at Natal-Brazil, assessing part of its Carbon Footprint. It has been used the software GEMIS 4.6 to do the emissions quantifying. The items measured were the direct emissions of the own unity vehicles and indirect emissions of offset paper (A4), energy and disposable plastic cups consumed. To 2009, these emissions were 3.811,94 tCO2eq. We may conclude that Carbon Footprint quantification is indispensable to the knowledge of real emissions caused by a productive process existence, must serving as basis to CSR decisions about the environmental changes reversion challenge

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

O objetivo deste trabalho foi avaliar as modificações químicas, microbiológicas e sensoriais do leite caprino pasteurizado e congelado durante armazenamento por 90 dias. Foram realizadas análises para caracterização química da matéria prima utilizada nos experimentos (gordura, acidez Dornic, densidade, extrato seco total, pH e ácidos graxos livres-AGL) e caracterização microbiológica (contagem total, psicrotróficos, coliformes totais e fecais). Utilizou-se pasteurização lenta a 63°±1°C por 30 minutos para as amostras de leite seguido de armazenamento em freezer à temperatura de -18°C±1°C. Nos tempos 0, 30, 60 e 90 dias de congelamento foram efetuadas análises químicas (pH, acidez e AGL), microbiológicas (contagem total, psicrotróficos e coliformes) e sensoriais (sabor e aroma característico, sabor e odor estranho e aparência geral). Também, realizou-se análise sensorial do leite nos tempos zero e com 90 dias de armazenamento, após descongelamento e homogeneização em liquidificador por dois minutos. Foi observado que o congelamento prolongado do leite pasteurizado não alterou significativamente suas características químicas e microbiológicas. Apenas a acidez apresentou decréscimo significativo. No entanto, a qualidade do leite do ponto de vista sensorial apresentou modificações significativas, com perdas de sabor e aroma característicos e declínio acentuado da aparência geral durante o armazenamento. A homogeneização do leite em liquidificador, após o descongelamento melhorou a aparência geral e a aceitação do produto pela equipe de provadores.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The sugarcane is a widely adapted species to tropical climate and has made key role in economic development in Southeast and Northeast. The ability to adapt in different environments can be evaluated through the growth analysis and yield. This study aimed to evaluate the growth and yield of four sugarcane varieties (RB92579 and SP79-1011, RB931530 and RB93509) in the third ratoon. The experiment was conducted at the CECA/UFAL, Rio Largo (28 degrees 02'09 '' S, 35 degrees 49'43 '' W and 127m). The experimental design was randomized blocks. Was evaluated monthly the number of plants, height, leaf area index and stem diameter. The quality of raw material, dry matter and yield were evaluated at 360 DAC. The data were subjected to analysis of variance and means compared to each other by Tukey test. The results showed that the maximum tillering occurred at 90 DAC for all varieties, and the RB92579 showed greater tillering and greater height at 360 DAC. The variety RB931530 had superior diameter than the others. The RB92579 and RB93509 were higher than the others on the sugar production, dry matter and yield, however, differed ech only on the matter. Varieties RB92579 and RB931530 had similar levels of Brix, PCC and ATR. Since this latter variable responsible for developing the pricing of sugarcane industry.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Objetivou-se neste trabalho, comparar a resistência à compressão de tijolos de solo-cimento fabricados com o montículo do cupim Cornitermes cumulans (Kollar, 1832), com tijolos que utilizaram como matéria prima um NEOSSOLO QUARTZARÊNICO (Empresa Brasileira de Pesquisa Agropecuária (EMBRAPA), 1999), ambos submetidos a duas idades de cura (07 ou 28 dias). O experimento foi montado em delineamento inteiramente casualizado, em esquema fatorial 2x2, sendo analisados dois cofatores: a matéria prima base e a idade de cura. Os ensaios físicos e mecânicos obedeceram às prescrições das normas da Associação Brasileira de Normas Técnicas NBR-8492 (ABNT, 1982) e NBR-8491 (ABNT, 1984). Concluiu-se que a resistência à compressão dos tijolos foi maior com o aumento das idades de cura. O tratamento T4 apresentou maior valor de resistência à compressão, não diferindo estatisticamente dos tratamentos T2 e T1. Os tijolos fabricados com o montículo do cupim C. cumulans (Kollar, 1832) apresentaram diminuição da absorção de água com o aumento das idades de cura, o que normalmente corresponde a um maior aumento da resistência à compressão, ao contrário dos que utilizaram o NEOSSOLO QUARTZARÊNICO (Empresa Brasileira de Pesquisa Agropecuária (EMBRAPA), 1999).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Companies involved in kaolin mining and treatment represent an important area of industrial development in Brazil, significantly contribution to the worldwide production of such mineral. As a result, large volumes of kaolin residue are constantly generated and abandoned in the environment, negatively contributing to its preservation. In this scenario, the objective of the present study was to characterize the residue generated from kaolin mining as well as to assess its potential use as raw material for the production of ceramic tiles. Ceramic mixtures were prepared from raw materials characterized by X-ray fluorescence, X-ray diffraction, particle size analysis and thermal analysis. Three compositions were prepared using kaolin residue contents of 10%, 20% and 30%. Samples were uniaxially pressed, fired at 1200ºC and characterized aiming at establishing their mineralogical composition, water absorption, apparent porosity, specific mass, linear retraction and modulus of rupture. The results showed that the residue basically consisted of kaolinite and successfully replaced raw kaolin in the preparation of ceramic title formulations without significantly affecting the properties of the fired material

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The production of red ceramic is an industrial activity that causes an intense impact. The manufacture of its products considerably increases the demand for natural resources, mainly with the extraction of raw material. The ceramic material produced generates waste, such as ash firewood and chamote. The residue from the beneficiation of kaolin is deposited in a poor, degrades the environment and contaminate water sources and soil, constituting in this manner, ecological disasters. The main objective of this work is to develop the formulation of a ceramic product consisting solely of industrial solid wastes, from ceramic tiles, (chamote) residue of kaolin and ash firewood. It is assumed that this product made in the laboratory can be used in coatings, wall and floor. The aim is to facilitate the replacement of the raw material of original composition of a ceramic body, for waste, while the process of production equal to the conventionally used, so that the properties of the product are reproduced. This work is characterized waste as its chemical composition, analysis of particle size, X-ray diffraction and thermal behavior. Several formulations were studied. The mass of waste was prepared by dry process, pressed to 25 MPa, and then burned in muffle type oven to 850, 950, 1050 and 1150 °C. The results showed that it is technically possible to produce porous tiles only with waste. It was found that the formulations of bodies play a key role in the properties of the final product, as well as the sintering temperature and heating rates. RN in the waste of kaolin is estimated at 15,000 t/month, about 3,000 gray t/month and chamote with 10 million pieces/month damaged. The presence of carbonates of calcium and magnesium at 1050 ° C results in an appropriate porosity and mechanical strength. The formulation M3JE, composed of 69% waste of kaolin, 7.7% and 23.3% of chamote of gray, became suitable for porous materials with the strength and absorption within the level of national and international standards

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The search for sustainable technologies that can contribute to reduce energy consumption is a great challenge in the field of insulation materials. In this context, composites manufactured from vegetal sources are an alternative technology. The principal objectives of this work are the development and characterization of a composite composed by the rigid polyurethane foam derived from castor oil (commercially available as RESPAN D40) and sisal fibers. The manufacture of the composite was done with expansion controlled inside a closed mold. The sisal fibers where used in the form of needlepunched nonwoven with a mean density of 1150 g/m2 and 1350 g/m2. The composite characterization was performed through the following tests: thermal conductivity, thermal behavior, thermo gravimetric analysis (TG/DTG), mechanical strength in compression and flexural, apparent density, water absorption in percentile, and the samples morphology was analyzed in a MEV. The density and humidity percentage of the sisal fiber were also determined. The thermal conductivity of the composites was higher than the pure polyurethane foam, the addition of nonwoven sisal fibers will become in a higher level of compact foam, reducing empty spaces (cells) of polyurethane, inducing an increase in k value. The apparent density of the composites was higher than pure polyurethane foam. In the results of water absorption tests, was seen a higher absorption percent of the composites, what is related to the presence of sisal fibers which are hygroscopic. From TG/DTG results, with the addition of sisal fibers reduced the strength to thermal degradation of the composites, a higher loss of mass was observed in the temperature band between 200 and 340 °C, related to urethane bonds decomposition and cellulose degradation and its derivatives. About mechanical behavior in compression and flexural, composites presented a better mechanical behavior than the rigid polyurethane foam. An increase in the amount of sisal fibers induces a higher rigidity of the composites. At the thermal behavior tests, the composites were more mechanically and thermally resistant than some materials commonly used for thermal insulation, they present the same or better results. The density of nonwoven sisal fiber had influence over the insulation grade; this means that, an increaser in sisal fiber density helped to retain the heat

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The process of recycling has been stimulated by the markets for several reasons, mainly on economical and environmental. Several products have been developed from recycled materials that already exist as well as several residues have been studied in different forms of applications. The greater majority of the applications for thermal insulation in the domestic, commercial and industrial systems have been elaborated in the temperature ranges between low to medium reaching up to 180oC. Many materials such as glass wool, rock wool, polystyrene are being used which are aggressive to the environment. Such materials in spite of the effectiveness in the retention of heat flow, they cost more and when discarded take several years to be absorbed by the nature. This way, in order to adapt to a world politics concerning the preservation of the environment, the present study was intended to develop a material composed of natural/biodegradable materials and industrial residues. The development of such a product in the form of a composite material based on tyre scrapes and latex for thermal insulation is presented in this research work. Thermal and physical properties of the tire scrapes as well as latex were studied in order to use them as raw materials for the manufacture of the intended composite to be applied as a thermal insulator in hot and cold systems varying between 0ºC and 200oC, respectively. Composite blankets were manufactured manually, in weight proportions of 1:1 (50:50%); 1:2 (33:67%) and 2:1 (67:33%) (tire scrapes: latex) respectively. Physical, mechanical and thermal properties of the composites were analyzed to obtain data about the viability of using the composite as a thermal insulator. The analyses carried out were based on standards ABNT, ASTM and UL. The maximum temperature obtained for the composite as a thermal insulator was 200ºC, which meets the range of applications that could be used as a thermal insulator in domestic as well as industrial purposes. The experimental results prove that the composite can be used as a thermal insulator on heated or cooled surface

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The State of Rio Grande do Norte, Brazil, possess major deposits of feldspar, clay, kaolin and talc, all raw materials used in the production of porcelainized stoneware tiles. Conversely, state industries manufacture only low added value red ceramics. Porcelainized stoneware tiles is one of the noblest ceramics, depicting low water absorption (typically below of 0,5%), in addition to excellent staining resistance and mechanical strength. The present work aims at investigating the potential of local raw materials for the production of porcelainized stoneware tiles. To that end, these materials were characterized by X-ray fluorescence, X-ray diffraction, particle size analysis, thermal gravimetric analysis and thermal differential analysis. Admixtures containing different compositions were prepared and fired at three temperatures, 1150, 1200 and 1250°C for 30 min. After firing, tests samples were characterized by water absorption tests, linear retraction, dilatometric analysis, apparent porosity, apparent specific mass, flexural strength, and microstructural analysis by XRD and SEM. The results revealed that ceramics with porcelainized stoneware tiles characteristics could be produced from raw materials originated in the State of Rio Grande do Norte

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In the execution of civil engineering works, either by wasting during the coating of wall or demolition of gypsum walls, the generation of the gypsum waste involves serious environmental concerns. These concerns are increased by the high demand of this raw material in the sector and by the difficulties of proper disposal byproduct generated. In the search for alternatives to minimize this problem, many research works are being conducted, giving emphasis in using gypsum waste as fillers in composites materials in order to improve the acoustic, thermal and mechanical performances. Through empirical testing, it was observed that the crystallization water contained in the residue (CaSO4.2H2O) could act like primary agent in the expanding of the polyurethane foam. Considering that polyurethane produced from vegetable oils are biodegradable synthetic polymers and that are admittedly to represent an alternative to petrochemical synthetic polyurethane, this research consist an analysis of the thermal behavior of a composite whose matrix obtained from a resin derived from the expansive castor oil seed, with loads of 4%, 8%, 12% and 16% of gypsum waste replacing to the polyol prepolymer blend. Contributors to this analysis: a characterization of the raw material through analysis of spectroscopy by Fourier transform infrared (FTIR), chemical analysis by X-Ray Fluorescence (XRF) and mineralogical analysis by X Ray Diffraction (XRD), complemented by thermo gravimetric analysis (TGA). In order to evaluate the thermo physical properties and thermal behavior of the composites manufactured in die closed with expansion contained, were also carried tests to determine the percentage of open pore volume using a gas pycnometer, scanning electronic microscopy (SEM), in addition to testing of flammability and the resistance to contact with hot surfaces. Through the analysis of the results, it appears that it is possible to produce a new material, which few changes in their thermo physical properties and thermal performance, promotes significant changes and attractive to the environment