970 resultados para Mammalian embryo
Resumo:
This study aimed to assess and evaluate the effects of Theileria equi infection on embryonic recovery, gestation and early embryonic loss. Thirteen Mangalarga Marchador Theileria equi positive donors (diagnosed through nested-PCR) and 40 embryos receptors were used. Donors were submitted to two embryo collections in two consecutive estrous cycles (GId); after, the same mares were treated with imidocarb dipropionate (1.2mg/kg IM.) in order to collect more embryos in two more estrous cycles (GIId). Receptors were divided into two groups (control and with treated) with 20 animals each, where one group was the control (GIr) and the other one (GIIr) treated with 1.2mg/kg IM of imidocarb dipropionate assessing the gestation rate at 15, 30, 45 and 60 days. After 52 embryo collections, the embryonic recovery rates were 53.84% (14/26) and 65.38% (17/26) (p> 0.05) for GId and GIId, respectively. The gestation rate was 70% (14/20) (p>0.05) at 15, 30, 45 and 60 days in group GIr and for GIIr was 85% (17/20) (p>0.05) at 15 days, 80% (16/20) (p>0.05) at 30, 45 and 60 days. The treatment with imidocarb dipropionate did not cause significant improvement in the reproductive efficiency at an ET program.
Resumo:
Abstract:Two ultrasound based fertility prediction methods were tested prior to embryo transfer (ET) and artificial insemination (AI) in cattle. Female bovines were submitted to estrous synchronization prior to ET and AI. Animals were scanned immediately before ET and AI procedure to target follicle and corpus luteum (CL) size and vascularity. In addition, inseminated animals were also scanned eleven days after insemination to target CL size and vascularity. All data was compared with fertility by using gestational diagnosis 35 days after ovulation. Prior to ET, CL vascularity showed a positive correlation with fertility, and no pregnancy occurred in animals with less than 40% of CL vascularity. Prior to AI and also eleven days after AI, no relationship with fertility was seen in all parameters analyzed (follicle and CL size and vascularity), and contrary, cows with CL vascularity greater than 70% exhibit lower fertility. In inseminated animals, follicle size and vascularity was positive related with CL size and vascularity, as shown by the presence of greater CL size and vascularity originated from follicle with also greater size and vascularity. This is the first time that ultrasound based fertility prediction methods were tested prior to ET and AI and showed an application in ET, but not in AI programs. Further studies are needed including hormone profile evaluation to improve conclusion.
Resumo:
The chalazal megaspore develops in a Polygonum-type embryo sac. The amyloplast-rich endothelium is partially degraded during the expansion of the micropylar portion of the megagametophyte. Organization of the mature embryo sac is determined by the patterns of vacuolation, nuclear migration, spindle orientation and cellularization. The egg cell is slightly chalazal in relation to the synergids, and its micropylar end does not touch the micropylar channel. At the chalazal pole of the egg apparatus, the common walls between the synergids, the egg and central cells, despite their tenuity, are present in the mature megagametophyte. The polar nuclei do not fuse before fertilization and the antipodals are persistent until the first stages of endosperm formation. The taxonomic significance of some embryological characters for the Bignoniaceae is discussed.
Resumo:
Galactomannans (GM) are storage cell wall polysaccharides present in endospermic seeds of legumes. They are thought to be storage polymers, since it has been observed for a few species (among them Sesbania virgata) that they are completely broken down after germination and their products are transferred to the growing embryo. We examined the effect of 10-4 M abscisic acid (ABA) on the degradation of galactomannan in isolated endosperms and intact seeds of S. virgata. We found that after seed germination the initial embryo growth was retarded. Ultrastructural analysis showed that the embryo is completely surrounded by an endosperm which displays very thick galactomannan-containing cell walls. Although an inhibitory effect has been observed on the increase of fresh mass of the embryo, the effect of ABA on the dry mass was weaker and transitory (from 48 to 96 h). Endosperm dry mass and galactomannan degradation were significantly inhibited and the activity of alpha-galactosidase was strongly affected. The addition of ABA before and/or after the start of mobilisation in intact seeds or isolated endosperms, showed that whereas addition before mobilisation did not affect dry mass decrease in intact seeds, it was strongly affected in isolated endosperms. On the other hand, whereas it affected embryo fresh mass increase in intact seeds, but not in isolated embryos, no significant effect was observed on dry mass. These results suggest that ABA affects galactomannan degradation and by doing so, prevents water absorption by the embryo, rather than affect its dry mass. As ABA has been detected in the endosperm of seeds of S. virgata, it is proposed that it probably acts as a modulator of galactomannan mobilisation and consequently synchronises it with early growth of the embryo.
Resumo:
In disuse atrophied skeletal muscle, the staircase response is virtually absent and light chain phosphorylation does not occur. The purpose of the present study was to determine if staircase could be restored in atrophied muscle with continued absence of myosin light chain phosphorylation, by reducing what appears to be an otherwise enhanced calcium release. Control (untreated) and sham-operated female Sprague-Dawley rats were compared with animals after 2 weeks of complete inactivity induced by tetrodotoxin (TTX) application to the left sciatic nerve. In situ isometric contractile responses of rat gastrocnemius muscle were analyzed before and after administration of dantrolene sodium (DS), a drug which is known to inhibit Ca2+ release in skeletal muscle. Twitch active force (AF) was attenuated by DS from 2.2 ± 0.2 N, 2.7 ± 0.1 N and 2.4 ± 0.2 N to 0.77 ± 0.2 N, 1.05 ± 0.1 N and 1.01 ± 0.2 N in TTX (N = 5), sham (N = 11) and control (N = 7) muscles, respectively. Following dantrolene treatment, 10 s of 10-Hz stimulation increased AF to 1.32 ± 0.2 N, 1.52 ± 0.1 N and 1.45 ± 0.2 N for the TTX, sham and control groups, respectively, demonstrating a positive staircase response. Regulatory light chain (R-LC) phosphorylation was lower for TTX-treated (5.5 ± 5.5%) than for control (26.1 ± 5.3%) and sham (20.0 ± 5%) groups. There was no significant change from resting levels for any of the groups after DS treatment (P = 0.88). This study shows that treatment with dantrolene permits staircase in atrophied muscle as well as control muscle, by a mechanism which appears to be independent of R-LC phosphorylation.
Resumo:
Erythrocyte membrane proteins from 44 representative mammals were studied. Protein 4.2 was not detected in guinea pigs (Cavia porcellus) (N = 14), Southern Brazilian swamp large rats (Myocastor coypus) (N = 2), cutias (Dasyprocta sp) (N = 4), and horses (Equus caballus) (N = 13). These animals also presented high ankyrin concentrations except for the horse which did not exhibit a sharp band, although minor components located between proteins 2 and 3 could account for the ankyrin family. The rodents studied did present band 6, which was not detectable in other common rodents such as white rats (Rattus norvegicus) (N = 9) and mice (Mus musculus) (N = 12). Since the absence of protein 4.2 does not disrupt the cytoskeleton membrane, we suggest that it is not an essential protein. Its absence may be compensated physiologically by the higher ankyrin concentration observed.
Resumo:
Penetration of Trypanosoma cruzi into mammalian cells depends on the activation of the parasite's protein tyrosine kinase and on the increase in cytosolic Ca2+ concentration. We used metacyclic trypomastigotes, the T. cruzi developmental forms that initiate infection in mammalian hosts, to investigate the association of these two events and to identify the various components of the parasite signal transduction pathway involved in host cell invasion. We have found that i) both the protein tyrosine kinase activation, as measured by phosphorylation of a 175-kDa protein (p175), and Ca2+ mobilization were induced in the metacyclic forms by the HeLa cell extract but not by the extract of T. cruzi-resistant K562 cells; ii) treatment of parasites with the tyrosine kinase inhibitor genistein blocked both p175 phosphorylation and the increase in cytosolic Ca2+ concentration; iii) the recombinant protein J18, which contains the full-length sequence of gp82, a metacyclic stage surface glycoprotein involved in target cell invasion, interfered with tyrosine kinase and Ca2+ responses, whereas the monoclonal antibody 3F6 directed at gp82 induced parasite p175 phosphorylation and Ca2+ mobilization; iv) treatment of metacyclic forms with phospholipase C inhibitor U73122 blocked Ca2+ signaling and impaired the ability of the parasites to enter HeLa cells, and v) drugs such as heparin, a competitive IP3-receptor blocker, caffeine, which affects Ca2+ release from IP3-sensitive stores, in addition to thapsigargin, which depletes intracellular Ca2+ compartments and lithium ion, reduced the parasite infectivity. Taken together, these data suggest that protein tyrosine kinase, phospholipase C and IP3 are involved in the signaling cascade that is initiated on the parasite cell surface by gp82 and leads to Ca2+ mobilization required for target cell invasion.
Resumo:
Chick cardiomyocytes, when submitted to hyposmotic swelling, exhibit a partial regulatory volume decrease (RVD). A Ca2+ influx by stretch-activated channels signals a taurine efflux and the RVD at 37°C. We evaluated the cell's performance at room temperature. Cardiomyocytes isolated and cultured from 11-day-old chick embryos were submitted to a hyposmotic solution (180 mOsm/kg H2O) at 37°C and at room temperature (26°C). Under these conditions we measured the changes in cell volume as well as the intracellular free Ca2+ (using fura-2). During hyposmotic swelling, cells at 37°C displayed a peak relative volume of 1.61 ± 0.03 and recovery to 1.22 ± 0.04 (N = 14), while cells at 26°C presented a peak swell relative volume of 1.74 ± 0.06 and did not recover (1.59 ± 0.09, N = 9). Transient increases in intracellular Ca2+, which are characteristic of the normal RVD, were observed at both temperatures (29.1 ± 4.5% (N = 8) and 115.2 ± 42.8% (N = 5) increase at 37° and 26°C (P<0.05), respectively). A delay in the Ca2+ transient increase was also observed when the cells were at 26°C (109 ± 34 s compared to 38 ± 9 s at 37°C, P<0.05). At room temperature the RVD does not occur because the calcium transient increase, which is an early event in the signaling of the RVD, is delayed. Also, free calcium is not cleared as in the 37°C RVD. In the normal RVD the free calcium returns to baseline levels. The very high and persistent free calcium levels seen at room temperature can lead to unregulated enzyme activities and may promote irreversible injury and cell death.
Resumo:
Pregnancy loss can be caused by several factors involved in human reproduction. Although up to 50% of cases remain unexplained, it has been postulated that the major cause of failed pregnancy is an error of embryo implantation. Transmembrane mucin-1 (MUC-1) is a glycoprotein expressed on the endometrial cell surface which acts as a barrier to implantation. The gene that codes for this molecule is composed of a polymorphic tandem repeat of 60 nucleotides. Our objective was to determine if MUC-1 genetic polymorphism is associated with implantation failure in patients with a history of recurrent abortion. The study was conducted on 10 women aged 25 to 35 years with no history of successful pregnancy and with a diagnosis of infertility. The control group consisted of 32 patients aged 25 to 35 years who had delivered at least two full-term live children and who had no history of abortions or fetal losses. MUC-1 amplicons were obtained by PCR and observed on agarose and polyacrylamide gel after electrophoresis. Statistical analysis showed no significant difference in the number of MUC-1 variable number of tandem repeats between these groups (P > 0.05). Our results suggest that there is no effect of the polymorphic MUC-1 sequence on the implantation failure. However, the data do not exclude MUC-1 relevance during embryo implantation. The process is related to several associated factors such as the mechanisms of gene expression in the uterus, specific MUC-1 post-translational modifications and appropriate interactions with other molecules during embryo implantation.
Resumo:
Interleukin-10 (IL-10) appears to be the key cytokine for the maintenance of pregnancy and inhibits the secretion of inflammatory cytokines such as tumor necrosis factor-α (TNF-α). However, there are no studies evaluating the profile of these cytokines in diabetic rat models. Thus, our aim was to analyze IL-10 and TNF-α immunostaining in placental tissue and their respective concentrations in maternal plasma during pregnancy in diabetic rats in order to determine whether these cytokines can be used as predictors of alterations in the embryo-fetal organism and in placental development. These parameters were evaluated in non-diabetic (control; N = 15) and Wistar rats with streptozotocin (STZ)-induced diabetes (N = 15). At term, the dams (100 days of life) were killed under anesthesia and plasma and placental samples were collected for IL-10 and TNF-α determinations by ELISA and immunohistochemistry, respectively. The reproductive performance was analyzed. Plasma IL-10 concentrations were reduced in STZ rats compared to controls (7.6 ± 4.5 vs 20.9 ± 8.1 pg/mL). The placental scores of immunostaining intensity did not differ between groups (P > 0.05). Prevalence analysis showed that the IL-10 expression followed TNF-α expression, showing a balance between them. STZ rats also presented impaired reproductive performance and reduced plasma IL-10 levels related to damage during early embryonic development. However, the increased placental IL-10 as a compensatory mechanism for the deficit of maternal regulation permitted embryo development. Therefore, the data suggest that IL-10 can be used as a predictor of changes in the embryo-fetal organism and in placental development in pregnant diabetic rats.
Resumo:
An important disease among human metabolic disorders is type 2 diabetes mellitus. This disorder involves multiple physiological defects that result from high blood glucose content and eventually lead to the onset of insulin resistance. The combination of insulin resistance, increased glucose production, and decreased insulin secretion creates a diabetic metabolic environment that leads to a lifetime of management. Appropriate models are critical for the success of research. As such, a unique model providing insight into the mechanisms of reversible insulin resistance is mammalian hibernation. Hibernators, such as ground squirrels and bats, are excellent examples of animals exhibiting reversible insulin resistance, for which a rapid increase in body weight is required prior to entry into dormancy. Hibernator studies have shown differential regulation of specific molecular pathways involved in reversible resistance to insulin. The present review focuses on this growing area of research and the molecular mechanisms that regulate glucose homeostasis, and explores the roles of the Akt signaling pathway during hibernation. Here, we propose a link between hibernation, a well-documented response to periods of environmental stress, and reversible insulin resistance, potentially facilitated by key alterations in the Akt signaling network, PPAR-γ/PGC-1α regulation, and non-coding RNA expression. Coincidentally, many of the same pathways are frequently found to be dysregulated during insulin resistance in human type 2 diabetes. Hence, the molecular networks that may regulate reversible insulin resistance in hibernating mammals represent a novel approach by providing insight into medical treatment of insulin resistance in humans.
Resumo:
Notch signaling is an evolutionarily ancient, highly conserved pathway important for deciding cell fate, cellular development, differentiation, proliferation, apoptosis, adhesion, and epithelial-to-mesenchymal transition. Notch signaling is also critical in mammalian cardiogenesis, as mutations in this signaling pathway are linked to human congenital heart disease. Furthermore, Notch signaling can repair myocardial injury by promoting myocardial regeneration, protecting ischemic myocardium, inducing angiogenesis, and negatively regulating cardiac fibroblast-myofibroblast transformation. This review provides an update on the known roles of Notch signaling in the mammalian heart. The goal is to assist in developing strategies to influence Notch signaling and optimize myocardial injury repair.
Resumo:
The isolation of heat-stable enterotoxin (STa) from Escherichia coli and cholera toxin from Vibrio cholerae has increased our knowledge of specific mechanisms of action that could be used as pharmacological tools to understand the guanylyl cyclase-C and the adenylyl cyclase enzymatic systems. These discoveries have also been instrumental in increasing our understanding of the basic mechanisms that control the electrolyte and water balance in the gut, kidney, and urinary tracts under normal conditions and in disease. Herein, we review the evolution of genes of the guanylin family and STa genes from bacteria to fish and mammals. We also describe new developments and perspectives regarding these novel bacterial compounds and peptide hormones that act in electrolyte and water balance. The available data point toward new therapeutic perspectives for pathological features such as functional gastrointestinal disorders associated with constipation, colorectal cancer, cystic fibrosis, asthma, hypertension, gastrointestinal barrier function damage associated with enteropathy, enteric infection, malnutrition, satiety, food preferences, obesity, metabolic syndrome, and effects on behavior and brain disorders such as attention deficit, hyperactivity disorder, and schizophrenia.
Resumo:
Sapucaia (Lecythis pisonis Camb.) raw nuts collected from Brazil were analyzed to determine the proximate composition, amino acid profile of protein fractions, in vitro protein digestibility and antinutritional factors in order to evaluate their potential as a protein alimentary complement. The nuts contained adequate amounts of essential amino acids, fatty acids and minerals. In the present study, no hemagglutinating or inhibitory activities were observed in any of the samples investigated, indicating low or non-detectable levels of proteinase inhibitors or lectins in the samples. In vitro digestibility of in natura and heated nut globulins by mammalian digestive proteinases was carried out using trypsin + chymotrypsin + peptidase, with resulting mean values of approximately 70.30 and 71.35%, respectively. Taken together, the results suggest that sapucaia nuts may provide a new source of protein to use as a potential nutritional agent.
Resumo:
A primary interest of image analysis of X-rayed seeds is to identify whether the extent of fill in the embryo cavity is associated with to seed physiological quality. The objective of this research was to verify the accuracy of the freely available Tomato Analyzer (TA) software developed at The Ohio State University to determine the ratio of embryo size over total seed area. Seeds of pumpkin, watermelon, cucumber and cotton were X-rayed and analyzed by the software which defines seed and embryo boundaries and automatically generates numerical values to quantify that ratio. Results showed that the TA has the sensitivity to evaluate the extent of embryo growth within the cucurbits and cotton seeds and is a promising alternative for this assessment in other seed species.