947 resultados para Magnetic response
Resumo:
Objective: The aim of this study was to design a novel experimental approach to investigate the morphological characteristics of auditory cortical responses elicited by rapidly changing synthesized speech sounds. Methods: Six sound-evoked magnetoencephalographic (MEG) responses were measured to a synthesized train of speech sounds using the vowels /e/ and /u/ in 17 normal hearing young adults. Responses were measured to: (i) the onset of the speech train, (ii) an F0 increment; (iii) an F0 decrement; (iv) an F2 decrement; (v) an F2 increment; and (vi) the offset of the speech train using short (jittered around 135. ms) and long (1500. ms) stimulus onset asynchronies (SOAs). The least squares (LS) deconvolution technique was used to disentangle the overlapping MEG responses in the short SOA condition only. Results: Comparison between the morphology of the recovered cortical responses in the short and long SOAs conditions showed high similarity, suggesting that the LS deconvolution technique was successful in disentangling the MEG waveforms. Waveform latencies and amplitudes were different for the two SOAs conditions and were influenced by the spectro-temporal properties of the sound sequence. The magnetic acoustic change complex (mACC) for the short SOA condition showed significantly lower amplitudes and shorter latencies compared to the long SOA condition. The F0 transition showed a larger reduction in amplitude from long to short SOA compared to the F2 transition. Lateralization of the cortical responses were observed under some stimulus conditions and appeared to be associated with the spectro-temporal properties of the acoustic stimulus. Conclusions: The LS deconvolution technique provides a new tool to study the properties of the auditory cortical response to rapidly changing sound stimuli. The presence of the cortical auditory evoked responses for rapid transition of synthesized speech stimuli suggests that the temporal code is preserved at the level of the auditory cortex. Further, the reduced amplitudes and shorter latencies might reflect intrinsic properties of the cortical neurons to rapidly presented sounds. Significance: This is the first demonstration of the separation of overlapping cortical responses to rapidly changing speech sounds and offers a potential new biomarker of discrimination of rapid transition of sound.
Resumo:
BACKGROUND: Increased reactive oxygen species (ROS) production is involved in the process of adverse cardiac remodeling and development of heart failure after myocardial infarction (MI). NADPH oxidase-2 (Nox2) is a major ROS source within the heart and its activity increases after MI. Furthermore, genetic deletion of Nox2 is protective against post-MI cardiac remodeling. Nox2 levels may increase both in cardiomyocytes and endothelial cells and recent studies indicate cell-specific effects of Nox2, but it is not known which of these cell types is important in post-MI remodeling. METHODS AND RESULTS: We have generated transgenic mouse models in which Nox2 expression is targeted either to cardiomyocytes (cardio-Nox2TG) or endothelial cells (endo-Nox2TG). We here studied the response of cardio-Nox2TG mice, endo-Nox2TG mice and matched wild-type littermates (WT) to MI induced by permanent left coronary artery ligation up to 4weeks. Initial infarct size assessed by magnetic resonance imaging (MRI) and cardiac dysfunction were similar among groups. Cardiomyocyte hypertrophy and interstitial fibrosis were augmented in cardio-Nox2TG compared to WT after MI and post-MI survival tended to be worse whereas endo-Nox2TG mice showed no significant difference compared to WT. CONCLUSIONS: These results indicate that cardiomyocyte rather than endothelial cell Nox2 may have the more important role in post-MI remodeling.
Resumo:
Parenteral use of drugs; such as opiates exert immunomodulatory effects and serve as a cofactor in the progression of HIV-1 infection, thereby potentiating HIV related neurotoxicity ultimately leading to progression of NeuroAIDS. Morphine exposure is known to induce apoptosis, down regulate cAMP response element-binding (CREB) expression and decrease in dendritic branching and spine density in cultured cells. Use of neuroprotective agent; brain derived neurotropic factor (BDNF), which protects neurons against these effects, could be of therapeutic benefit in the treatment of opiate addiction. Previous studies have shown that BDNF was not transported through the blood brain barrier (BBB) in-vivo.; and hence it is not effectivein-vivo. Therefore development of a drug delivery system that can cross BBB may have significant therapeutic advantage. In the present study, we hypothesized that magnetically guided nanocarrier may provide a viable approach for targeting BDNF across the BBB. We developed a magnetic nanoparticle (MNP) based carrier bound to BDNF and evaluated its efficacy and ability to transmigrate across the BBB using an in-vitro BBB model. The end point determinations of BDNF that crossed BBB were apoptosis, CREB expression and dendritic spine density measurement. We found that transmigrated BDNF was effective in suppressing the morphine induced apoptosis, inducing CREB expression and restoring the spine density. Our results suggest that the developed nanocarrier will provide a potential therapeutic approach to treat opiate addiction, protect neurotoxicity and synaptic density degeneration.
Resumo:
Background: Increased impulsivity and aberrant response inhibition have been observed in bipolar disorder (BD). This study examined the functional abnormalities and underlying neural processes during response inhibition in BD, and its relationship to impulsivity. Methods: We assessed impulsivity using the Barratt Impulsiveness Scale (BIS) and, using functional magnetic resonance imaging (fMRI), measured neural activity in response to an Affective Go-NoGo Task, consisting of emotional facial stimuli (fear, happy, anger faces) and non-emotional control stimuli (neutral female and male faces) in euthymic BD (n=23) and healthy individuals (HI; n=25). Results: BD patients were significantly more impulsive, yet did not differ from HI on accuracy or reaction time on the emotional go/no-go task. Comparing neural patterns of activation when processing emotional Go versus emotional NoGo trials yielded increased activation in BD within temporal and cingulate cortices and within prefrontal-cortical regions in HI. Furthermore, higher BIS scores for BD were associated with slower reaction times, and indicative of compensatory cognitive strategies to counter increased impulsivity. Conclusions: These findings illustrate cognition-emotion interference in BD and the observed differences in neural activation indicate potentially altered emotion modulation. Increased activation in brain regions previously shown in emotion regulation and response inhibition tasks could represent a disease-specific marker for BD
Resumo:
The fabrication of highly-oriented polycrystalline ceramics of Bi 5Fe 0.5Co 0.5Ti 3O 15, prepared via molten salt synthesis and uniaxial pressing of high aspect ratio platelets is reported. Electron backscatter images show a secondary phase within the ceramic which is rich in cobalt and iron. The concentration of the secondary phase obtained from scanning electron microscopy is estimated at less than 2% by volume, below the detection limit of x-ray diffraction (XRD). The samples were characterized by x-ray diffraction, polarization-electric field measurements, superconducting quantum interference device as a function of sample orientation and vibrating sample magnetometry as a function of temperature. It is inferred from the data that the observed ferromagnetic response is dominated by the secondary phase. This work highlights the importance of rigorous materials characterisation in the study of multiferroics as small amounts of secondary phase, below the limit of XRD, can lead to false conclusions.
Resumo:
Biological macromolecules can rearrange interdomain orientations when binding to various partners. Interdomain dynamics serve as a molecular mechanism to guide the transitions between orientations. However, our understanding of interdomain dynamics is limited because a useful description of interdomain motions requires an estimate of the probabilities of interdomain conformations, increasing complexity of the problem.
Staphylococcal protein A (SpA) has five tandem protein-binding domains and four interdomain linkers. The domains enable Staphylococcus aureus to evade the host immune system by binding to multiple host proteins including antibodies. Here, I present a study of the interdomain motions of two adjacent domains in SpA. NMR spin relaxation experiments identified a 6-residue flexible interdomain linker and interdomain motions. To quantify the anisotropy of the distribution of interdomain orientations, we measured residual dipolar couplings (RDCs) from the two domains with multiple alignments. The N-terminal domain was directly aligned by a lanthanide ion and not influenced by interdomain motions, so it acted as a reference frame to achieve motional decoupling. We also applied {\it de novo} methods to extract spatial dynamic information from RDCs and represent interdomain motions as a continuous distribution on the 3D rotational space. Significant anisotropy was observed in the distribution, indicating the motion populates some interdomain orientations more than others. Statistical thermodynamic analysis of the observed orientational distribution suggests that it is among the energetically most favorable orientational distributions for binding to antibodies. Thus, the affinity is enhanced by a pre-posed distribution of interdomain orientations while maintaining the flexibility required for function.
The protocol described above can be applied to other biological systems in general. Protein molecule calmodulin and RNA molecule trans-activation response element (TAR) also have intensive interdomain motions with relative small intradomain dynamics. Their interdomain motions were studied using our method based on published RDC data. Our results were consistent with literature results in general. The differences could be due to previous studies' use of physical models, which contain assumptions about potential energy and thus introduced non-experimental information into the interpretations.
Resumo:
Magnetism and magnetic materials have been playing a lead role in the day to day life of human beings. The human kind owes its gratitude to the ‘lodestone’ meaning ‘leading stone’ which lead to the discovery of nations and the onset of modern civilizations. If it was William Gilbert, who first stated that ‘earth was a giant magnet’, then it was the turn of Faraday who correlated electricity and magnetism. Magnetic materials find innumerable applications in the form of inductors, read and write heads, motors, storage devices, magnetic resonance imaging and fusion reactors. Now the industry of magnetic materials has almost surpassed the semiconductor industry and this speaks volumes about its importance. Extensive research is being carried out by scientists and engineers to remove obsolescence and invent new devices. Though magnetism can be categorized based on the response of an applied magnetic field in to diamagnetic, paramagnetic, ferromagnetic, ferrimagnetic and antiferromagnetic; it is ferrimagnetic, ferromagnetic and antiferromagnetic materials which have potential applications. The present thesis focusses on these materials, their composite structures and different ways and means to modify their properties for useful applications. In the past, metals like Fe, Ni and Co were sought after for various applications though iron was in the forefront because of its cost effectiveness and abundance. Later, alloys based on Fe and Ni were increasingly employed. They were used in magnetic heads and in inductors. Ferrites entered the arena and subsequently most of the newer applications were based on ferrites, a ferrimagnetic material, whose composition can be tuned to tailor the magnetic properties. In the late 1950s a new class of magnetic material emerged on the magnetic horizon and they were fondly known as metallic glasses. They are well known for their soft magnetic properties. They were synthesized in the form of melt spun ribbons and are amorphous in nature and they are projected to replace the crystalline counterparts.
Resumo:
Magnetism and magnetic materials have been playing a lead role in the day to day life of human beings. The human kind owes its gratitude to the ‘lodestone’ meaning ‘leading stone’ which lead to the discovery of nations and the onset of modern civilizations. If it was William Gilbert, who first stated that ‘earth was a giant magnet’, then it was the turn of Faraday who correlated electricity and magnetism. Magnetic materials find innumerable applications in the form of inductors, read and write heads, motors, storage devices, magnetic resonance imaging and fusion reactors. Now the industry of magnetic materials has almost surpassed the semiconductor industry and this speaks volumes about its importance. Extensive research is being carried out by scientists and engineers to remove obsolescence and invent new devices. Though magnetism can be categorized based on the response of an applied magnetic field in to diamagnetic, paramagnetic, ferromagnetic, ferrimagnetic and antiferromagnetic; it is ferrimagnetic, ferromagnetic and antiferromagnetic materials which have potential applications. The present thesis focusses on these materials, their composite structures and different ways and means to modify their properties for useful applications.
Resumo:
The thesis aims to exploit properties of thin films for applications such as spintronics, UV detection and gas sensing. Nanoscale thin films devices have myriad advantages and compatibility with Si-based integrated circuits processes. Two distinct classes of material systems are investigated, namely ferromagnetic thin films and semiconductor oxides. To aid the designing of devices, the surface properties of the thin films were investigated by using electron and photon characterization techniques including Auger electron spectroscopy (AES), X-ray photoelectron spectroscopy (XPS), grazing incidence X-ray diffraction (GIXRD), and energy-dispersive X-ray spectroscopy (EDS). These are complemented by nanometer resolved local proximal probes such as atomic force microscopy (AFM), magnetic force microscopy (MFM), electric force microscopy (EFM), and scanning tunneling microscopy to elucidate the interplay between stoichiometry, morphology, chemical states, crystallization, magnetism, optical transparency, and electronic properties. Specifically, I studied the effect of annealing on the surface stoichiometry of the CoFeB/Cu system by in-situ AES and discovered that magnetic nanoparticles with controllable areal density can be produced. This is a good alternative for producing nanoparticles using a maskless process. Additionally, I studied the behavior of magnetic domain walls of the low coercivity alloy CoFeB patterned nanowires. MFM measurement with the in-plane magnetic field showed that, compared to their permalloy counterparts, CoFeB nanowires require a much smaller magnetization switching field , making them promising for low-power-consumption domain wall motion based devices. With oxides, I studied CuO nanoparticles on SnO2 based UV photodetectors (PDs), and discovered that they promote the responsivity by facilitating charge transfer with the formed nanoheterojunctions. I also demonstrated UV PDs with spectrally tunable photoresponse with the bandgap engineered ZnMgO. The bandgap of the alloyed ZnMgO thin films was tailored by varying the Mg contents and AES was demonstrated as a surface scientific approach to assess the alloying of ZnMgO. With gas sensors, I discovered the rf-sputtered anatase-TiO2 thin films for a selective and sensitive NO2 detection at room temperature, under UV illumination. The implementation of UV enhances the responsivity, response and recovery rate of the TiO2 sensor towards NO2 significantly. Evident from the high resolution XPS and AFM studies, the surface contamination and morphology of the thin films degrade the gas sensing response. I also demonstrated that surface additive metal nanoparticles on thin films can improve the response and the selectivity of oxide based sensors. I employed nanometer-scale scanning probe microscopy to study a novel gas senor scheme consisting of gallium nitride (GaN) nanowires with functionalizing oxides layer. The results suggested that AFM together with EFM is capable of discriminating low-conductive materials at the nanoscale, providing a nondestructive method to quantitatively relate sensing response to the surface morphology.
Resumo:
Pulmonary hypertension (PH) is a rare but serious condition that causes progressive right ventricular (RV) failure and death. PH may be idiopathic, associated with underlying connective-tissue disease or hypoxic lung disease, and is also increasingly being observed in the setting of heart failure with preserved ejection fraction (HFpEF). The management of PH has been revolutionised by the recent development of new disease-targeted therapies which are beneficial in pulmonary arterial hypertension (PAH), but can be potentially harmful in PH due to left heart disease, so accurate diagnosis and classification of patients is essential. These PAH therapies improve exercise capacity and pulmonary haemodynamics, but their overall effect on the right ventricle remains unclear. Current practice in the UK is to assess treatment response with 6-minute walk test and NYHA functional class, neither of which truly reflects RV function. Cardiac magnetic resonance (CMR) imaging has been established as the gold standard for the evaluation of right ventricular structure and function, but it also allows a non-invasive and accurate study of the left heart. The aims of this thesis were to investigate the use of CMR in the diagnosis of PH, in the assessment of treatment response, and in predicting survival in idiopathic and connective-tissue disease associated PAH. In Chapter 3, a left atrial volume (LAV) threshold of 43 ml/m2 measured with CMR was able to distinguish idiopathic PAH from PH due to HFpEF (sensitivity 97%, specificity 100%). In Chapter 4, disease-targeted PAH therapy resulted in significant improvements in RV and left ventricular ejection fraction (p<0.001 and p=0.0007, respectively), RV stroke volume index (p<0.0001), and left ventricular end-diastolic volume index (p=0.0015). These corresponded to observed improvements in functional class and exercise capacity, although correlation coefficients between Δ 6MWD and Δ RVEF or Δ LVEDV were low. Finally, in Chapter 5, one-year and three-year survival was worse in CTD-PAH (75% and 53%) than in IPAH (83% and 74%), despite similar baseline clinical characteristics, lung function, pulmonary haemodynamics and treatment. Baseline right ventricular stroke volume index was an independent predictor of survival in both conditions. The presence of LV systolic dysfunction was of prognostic significance in CTD-PAH but not IPAH, and a higher LAV was observed in CTD-PAH suggesting a potential contribution from LV diastolic dysfunction in this group.
Resumo:
Neoadjuvant chemoradiation (CRT) followed by curative surgery still remains the standard of care for locally advanced rectal cancer (LARC). The main purpose of this multimodal treatment is to achieve a complete pathological tumor response (ypCR), with better survival. The surgery delay after CRT completion seems to increase tumor response and ypCR rate. Usually, time intervals range from 8 to 12 weeks, but the maximum tumor regression may not be seen in rectal adenocarcinomas until several months after CRT. About this issue, we report a case of a 52-year-old man with LARC treated with neoadjuvant CRT who developed, one month after RT completion, an acute myocardial infarction. The need to increase the interval between CRT and surgery for 17 weeks allowed a curative surgery without morbidity and an unexpected complete tumor response in the resected specimen (given the parameters presented in pelvic magnetic resonance imaging (MRI) performed 11 weeks after radiotherapy completion).
Resumo:
This dissertation presents detailed experimental and theoretical investigations of nonlinear and nonreciprocal effects in magnetic garnet films. The dissertation thus comprises two major sections. The first section concentrates on the study of a new class of nonlinear magneto-optic thin film materials possessing strong higher order magnetic susceptibility for nonlinear optical applications. The focus was on enlarging the nonlinear performance of ferrite garnet films by strain generation and compositional gradients in the sputter-deposition growth of these films. Under this project several bismuth-substituted yttrium iron garnet (Bi,Y) 3 (Fe,Ga)5 O12(acronym as Bi:YIG) films have been sputter-deposited over gadolinium gallium garnet (Gd 3 Ga5 O12 ) substrates and characterized for their nonlinear optical response. One of the important findings of this work is that lattice mismatch strain drives the second harmonic (SH) signal in the Bi:YIG films, in agreement with theoretical predictions; whereas micro-strain was found not to correlate significantly with SH signal at the micro-strain levels present in these films. This study also elaborates on the role of the film's constitutive elements and their concentration gradients in nonlinear response of the films. Ultrahigh sensitivity delivered by second harmonic generation provides a new exciting tool for studying magnetized surfaces and buried interfaces, making this work important from both a fundamental and application point of view. The second part of the dissertation addresses an important technological need; namely the development of an on-chip optical isolator for use in photonic integrated circuits. It is based on two related novel effects, nonreciprocal and unidirectional optical Bloch oscillations (BOs), recently proposed and developed by Professor Miguel Levy and myself. This dissertation work has established a comprehensive theoretical background for the implementation of these effects in magneto-optic waveguide arrays. The model systems we developed consist of photonic lattices in the form of one-dimensional waveguide arrays where an optical force is introduced into the array through geometrical design turning the beam sideways. Laterally displaced photons are periodically returned to a central guide by photonic crystal action. The effect leads to a novel oscillatory optical phenomenon that can be magnetically controlled and rendered unidirectional. An on-chip optical isolator was designed based on the unidirectionality of the magneto-opticBloch oscillatory motion. The proposed device delivers an isolation ratio as high as 36 dB that remains above 30 dB in a 0.7 nm wavelength bandwidth, at the telecommunication wavelength 1.55 μm. Slight modifications in isolator design allow one to achieve an even more impressive isolation ratio ~ 55 dB, but at the expense of smaller bandwidth. Moreover, the device allows multifunctionality, such as optical switching with a simultaneous isolation function, well suited for photonic integrated circuits.
Resumo:
This paper reports on a low frequency piezoelectric energy harvester that scavenges energy from a wire carrying an AC current. The harvester is described, fabricated and characterized. The device consists of a silicon cantilever with integrated piezoelectric capacitor and proof-mass that incorporates a permanent magnet. When brought close to an AC current carrying wire, the magnet couples to the AC magnetic field from a wire, causing the cantilever to vibrate and generate power. The measured average power dissipated across an optimal resistive load was 1.5 μW. This was obtained by exciting the device into mechanical resonance using the electro-magnetic field from the 2 A source current. The measurements also reveal that the device has a nonlinear response that is due to a spring hardening mechanism.