871 resultados para Machine vision and image processing


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A scale invariant feature transform (SIFT) based mean shift algorithm is presented for object tracking in real scenarios. SIFT features are used to correspond the region of interests across frames. Meanwhile, mean shift is applied to conduct similarity search via color histograms. The probability distributions from these two measurements are evaluated in an expectation–maximization scheme so as to achieve maximum likelihood estimation of similar regions. This mutual support mechanism can lead to consistent tracking performance if one of the two measurements becomes unstable. Experimental work demonstrates that the proposed mean shift/SIFT strategy improves the tracking performance of the classical mean shift and SIFT tracking algorithms in complicated real scenarios.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new, front-end image processing chip is presented for real-time small object detection. It has been implemented using a 0.6 µ, 3.3 V CMOS technology and operates on 10-bit input data at 54 megasamples per second. It occupies an area of 12.9 mm×13.6 mm (including pads), dissipates 1.5 W, has 92 I/O pins and is to be housed in a 160-pin ceramic quarter flat-pack. It performs both one- and two-dimensional FIR filtering and a multilayer perceptron (MLP) neural network function using a reconfigurable array of 21 multiplication-accumulation cells which corresponds to a window size of 7×3. The chip can cope with images of 2047 pixels per line and can be cascaded to cope with larger window sizes. The chip performs two billion fixed point multiplications and additions per second.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This implementation of a two-dimensional discrete cosine transform demonstrates the development of a suitable architectural style for a specific technology-in this case, the Xilinx XC6200 FPGA series. The design exploits distributed arithmetic, parallelism, and pipelining to achieve a high-performance custom-computing implementation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Color segmentation of images usually requires a manual selection and classification of samples to train the system. This paper presents an automatic system that performs these tasks without the need of a long training, providing a useful tool to detect and identify figures. In real situations, it is necessary to repeat the training process if light conditions change, or if, in the same scenario, the colors of the figures and the background may have changed, being useful a fast training method. A direct application of this method is the detection and identification of football players.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Details are presented of the IRIS synthesis system for high-performance digital signal processing. This tool allows non-specialists to automatically derive VLSI circuit architectures from high-level, algorithmic representations, and provides a quick route to silicon implementation. The applicability of the system is demonstrated using the design example of a one-dimensional Discrete Cosine Transform circuit.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new high performance, programmable image processing chip targeted at video and HDTV applications is described. This was initially developed for image small object recognition but has much broader functional application including 1D and 2D FIR filtering as well as neural network computation. The core of the circuit is made up of an array of twenty one multiplication-accumulation cells based on systolic architecture. Devices can be cascaded to increase the order of the filter both vertically and horizontally. The chip has been fabricated in a 0.6 µ, low power CMOS technology and operates on 10 bit input data at over 54 Megasamples per second. The introduction gives some background to the chip design and highlights that there are few other comparable devices. Section 2 gives a brief introduction to small object detection. The chip architecture and the chip design will be described in detail in the later sections.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The paper presents IPPro which is a high performance, scalable soft-core processor targeted for image processing applications. It has been based on the Xilinx DSP48E1 architecture using the ZYNQ Field Programmable Gate Array and is a scalar 16-bit RISC processor that operates at 526MHz, giving 526MIPS of performance. Each IPPro core uses 1 DSP48, 1 Block RAM and 330 Kintex-7 slice-registers, thus making the processor as compact as possible whilst maintaining flexibility and programmability. A key aspect of the approach is in reducing the application design time and implementation effort by using multiple IPPro processors in a SIMD mode. For different applications, this allows us to exploit different levels of parallelism and mapping for the specified processing architecture with the supported instruction set. In this context, a Traffic Sign Recognition (TSR) algorithm has been prototyped on a Zedboard with the colour and morphology operations accelerated using multiple IPPros. Simulation and experimental results demonstrate that the processing platform is able to achieve a speedup of 15 to 33 times for colour filtering and morphology operations respectively, with a reduced design effort and time.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

With security and surveillance, there is an increasing need to be able to process image data efficiently and effectively either at source or in a large data networks. Whilst Field Programmable Gate Arrays have been seen as a key technology for enabling this, they typically use high level and/or hardware description language synthesis approaches; this provides a major disadvantage in terms of the time needed to design or program them and to verify correct operation; it considerably reduces the programmability capability of any technique based on this technology. The work here proposes a different approach of using optimised soft-core processors which can be programmed in software. In particular, the paper proposes a design tool chain for programming such processors that uses the CAL Actor Language as a starting point for describing an image processing algorithm and targets its implementation to these custom designed, soft-core processors on FPGA. The main purpose is to exploit the task and data parallelism in order to achieve the same parallelism as a previous HDL implementation but avoiding the design time, verification and debugging steps associated with such approaches.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Digital pathology and the adoption of image analysis have grown rapidly in the last few years. This is largely due to the implementation of whole slide scanning, advances in software and computer processing capacity and the increasing importance of tissue-based research for biomarker discovery and stratified medicine. This review sets out the key application areas for digital pathology and image analysis, with a particular focus on research and biomarker discovery. A variety of image analysis applications are reviewed including nuclear morphometry and tissue architecture analysis, but with emphasis on immunohistochemistry and fluorescence analysis of tissue biomarkers. Digital pathology and image analysis have important roles across the drug/companion diagnostic development pipeline including biobanking, molecular pathology, tissue microarray analysis, molecular profiling of tissue and these important developments are reviewed. Underpinning all of these important developments is the need for high quality tissue samples and the impact of pre-analytical variables on tissue research is discussed. This requirement is combined with practical advice on setting up and running a digital pathology laboratory. Finally, we discuss the need to integrate digital image analysis data with epidemiological, clinical and genomic data in order to fully understand the relationship between genotype and phenotype and to drive discovery and the delivery of personalized medicine.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Power has become a key constraint in current nanoscale integrated circuit design due to the increasing demands for mobile computing and a low carbon economy. As an emerging technology, an inexact circuit design offers a promising approach to significantly reduce both dynamic and static power dissipation for error tolerant applications. Although fixed-point arithmetic circuits have been studied in terms of inexact computing, floating-point arithmetic circuits have not been fully considered although require more power. In this paper, the first inexact floating-point adder is designed and applied to high dynamic range (HDR) image processing. Inexact floating-point adders are proposed by approximately designing an exponent subtractor and mantissa adder. Related logic operations including normalization and rounding modules are also considered in terms of inexact computing. Two HDR images are processed using the proposed inexact floating-point adders to show the validity of the inexact design. HDR-VDP is used as a metric to measure the subjective results of the image addition. Significant improvements have been achieved in terms of area, delay and power consumption. Comparison results show that the proposed inexact floating-point adders can improve power consumption and the power-delay product by 29.98% and 39.60%, respectively.