992 resultados para MODIFIED GOLD ELECTRODES


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Chemically modified electrodes (CMEs) were prepared by adsorbing different dyes, including methylene blue (MB), toluidine blue (TB) and brilliant cresyl blue (BCB), onto glassy carbon electrodes (GCE) with anodic pretreatment. The electrochemical reactions of adsorbed dyes are fairly reversible at low coverages. The CMEs are more stable in acid solutions than in alkaline ones, which is mainly due to decomposition of the dyes in the latter media. They exhibit an excellent catalytic ability for the oxidation of nicotinamide coenzymes (NADH and NADPH). The formation of a charge transfer complex between the coenzyme and the adsorbed mediator has been demonstrated using a rotating disk electrode. The charge transfer complex decomposition is a slow step in the overall electrode reaction process. Some kinetic parameters are estimated. Dependence of the electrocatalytic activity of the CMEs on the solution pH is discussed.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The electrochemical behavior of catechol, hydroquinone and resorcinol on GC and PPy/GC electrode surface were studied by CV and RDE method. The results indicated that these three substance could be oxidized electrocatalytically on PPy film electrode. The possibility of fabrication of amperometric electrochemical sensor for catechol was also studied.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this work, the adsorption or binding of cytochrome c with 4-pyridyl derivatives modified on the gold electrode was studied. It was found that the concentrations of electrolyte had much influence on the adsorption of cytochrome c. At lower concentration

Relevância:

40.00% 40.00%

Publicador:

Resumo:

HOPG and GC electrode surface feature modified with Cobaltmethyltetraphenylorphyrins (CoTPP) was investigated by scanning tunneling microscope combined with cyclic voltammograms. The effect of electrode surface morphologie

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Chemically modified electrodes with Methylene Green adsorbed on the graphite surface and incorporated into carbon paste exhibit excellent electrocatalytic ability for oxidation of NADH. Alcohol dehydrogenase, nicotinamide adenine dinucleotide (NAD+) and m

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Electrodes modified with isopolymolybdic acid+polyaniline film, which exhibit high stability and activity in aqueous acidic solution, have been prepared successfully using two methods: one-step synthesis by electrochemical polymerization at a constant applied potential of +0.80 V/SCE or by cycling the potential at 100 mV/s between -0.12 and +0.85 V in 0.5 M H2SO4 containing 5.0x10(-2) M aniline and 5.0x10(-3) M H4Mo8O26, or two-step synthesis by doping the polyaniline film electrode with isopoly acid (IPA) under a cycling potential between -0.20 and +0.40 V in 0.5 M H2SO4 containing the H4Mo8O26 dopant. The thickness of the film and the amount of dopant in the polyaniline film can be controlled by experimental parameters such as the charge, time and the ratio of aniline to IPA in the solution. The experimental results show that electrodes modified with isopolymolybdic acid+polyaniline film using both methods have a strong catalytic effect on the reduction of chlorate anions. Comparison of the two methods of modification shows that the catalytic effect at the modified electrode prepared by the two-step method is greater than that at the electrode prepared by the one-step method.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A new liquid chromatography electrochemical (LCEC) scheme for glucose sensing has been developed on the basis of a Prussian Blue chemically modified electrode (CME) of novel construction and characterized in terms of various experimental parameters by the flow injection analysis (FIA) technique. Unique hydrodynamic voltammograms were obtained for the first time at the CME in the flow-through amperometric detection of glucose, and subsequently both anodic and cathodic peaks could be expected on monitoring the operating potential in the modest positive or negative region. The unique pH dependence on the CME response towards glucose makes it perfectly compatible with conventional reversed phase liquid chromatography systems. On the basis of these features, practical application in glucose LCEC detection has been effectively performed; a linear response range over three orders of magnitude and a detection limit of subpicomole level were readily obtained. The capability of the established LCEC mode in the direct sensing of urinary glucose has been demonstrated.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The Electrochemical stability of poly(3-methylthiophene) (PMT) thin film modified glassy carbon electrodes was investigated experimentally with successive cyclic voltammetry(CV) The effects of electrolyte solutions on the stability were studied. In the presence of small hydrated anions (less-than-or-equal-to 3.5nm) in the solution, the electroactivity of PMT films decreased with the characteristics of second order kinetics. In a solution with large hydrated anions (greater-than-or-equal-to 4 nm), PMT films have good stability. PMT/GO electrode can electrocatalyse the oxidation of Br- and Cl- anions, and loses its electroactivity rapidly. X-ray photoelectron spectra (XPS) have demonstrated that chlorine has bonded covalently onto the PMT structure after OV cycles in NaCl solutions.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The electrochemical polymerization of amino-derivatives of naphthalene has been studied on the platinum wire electrodes. The effects of acidity of the modifying media and the potential scan rate on the cyclic voltammograms are verified. As potentiometric pH sensors, the electrodes prepared from 1-naphthylamine and 2,3-diaminonaphthalene showed performance characteristics superior to some other electrodes tested. The electrode modified with 1-naphthylamine in the optimum medium showed a nearly Nernstian response of 4.20-13.70 pH and a slope of -54.8 mV/pH, while the linear range of the electrode prepared by 2,3-diaminonaphthalene was 4.00-13.60 pH, with a slope of -52.4 mV/pH.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A conducting polyaniline (PAn) film modified glassy carbon (GC) electrode was prepared by electrochemical polymerization. The electrochemical behavior of ascorbic acid (AH(2)) in aqueous solution at this PAn modified electrode was studied in detail. The experimental results show that PAn film modified electrode has good electrocatalytic activity on the oxidation of ascorbic acid in aqueous solution over a wide range of pH value, among which pH 4 is the optimum condition. The oxidation process of ascorbic acid at PAn film electrode can be regarded as an EC catalytic mechanism. The kinetic process of the catalytic reaction was investigated by rotating disk electrode (RDE) coated with PAn films. The rate constant of the catalytic reaction was evaluated. The catalytic peak currents are proportional to the concentrations tions of ascorbic acid in the range of 5 x 10(-2)-1 x 10(-6) mol . L-1. The PAn film elec trodes give very stable responce for the oxidation of ascorbic acid. The present investigation shows the posibility of using PAn film modified electrode for the determination of ascorbic acid.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A copper-based chemically-modified electrode has been constructed and characterized by various experimental parameters in flow-through amperometric detection of carboxylic acids and phenolic acids. Novel hydrodynamic voltamperograms were first obtained in flow-through amperometric detection with the Cu-based CME and subsequently negative and positive peaks were observed in a single chromatogram. This unique and flexible potential dependence could be of great benefit in chromatographic speciation and quantification. These observations suggest that the detector response was governed by the complexation reaction of copper ions with the solutes.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The use of chemically modified electrodes (CMEs) for liquid chromatography and flow-injection analysis is reviewed. Electrochemical detection with CMEs based on electrocatalysis, permselectivity, ion flow in redox films, and ion transfer across the water-solidified nitrobenzene interface is discussed in terms of improving the stability, selectivity, and scope of electrochemical detectors, and the detection of electroinactive substances. More than 90 references are included.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The kinetics of prussian blue (PB) film itself during the redox process and of the catalytic oxidation of ascorbic acid (AH_2) on it have been studied in detail. The charge transfer diffusion coefficient D_(ct) in PB film is determined as 2.62×10~(-10)cm~2·s~(-1), using potential-step chronoamperometry, chronocoulometry and constant-current chronopotentialmetry, respectively. The rate constant of the cross-exchange reaction between AH_2 in solution and the active centers in PB film is measured in rotating d...