989 resultados para MIXED DISCRETE
Resumo:
This paper deals with the interpretation of the discrete-time optimal control problem as a scattering process in a discrete medium. We treat the discrete optimal linear regulator, constrained end-point and servo and tracking problems, providing a unified approach to these problems. This approach results in an easy derivation of the desired results as well as several new ones.
Resumo:
We study the problem of matching applicants to jobs under one-sided preferences: that is, each applicant ranks a non-empty subset of jobs under an order of preference, possibly involving ties. A matching M is said to be rnore popular than T if the applicants that prefer M to T outnumber those that prefer T to M. A matching is said to be popular if there is no matching more popular than it. Equivalently, a matching M is popular if phi(M,T) >= phi(T, M) for all matchings T, where phi(X, Y) is the number of applicants that prefer X to Y. Previously studied solution concepts based oil the popularity criterion are either not guaranteed to exist for every instance (e.g., popular matchings) or are NP-hard to compute (e.g., least unpopular matchings). This paper addresses this issue by considering mixed matchings. A mixed matching is simply a probability distributions over matchings in the input graph. The function phi that compares two matchings generalizes in a natural manner to mixed matchings by taking expectation. A mixed matching P is popular if phi(P,Q) >= phi(Q,P) for all mixed matchings Q. We show that popular mixed matchings always exist. and we design polynomial time algorithms for finding them. Then we study their efficiency and give tight bounds on the price of anarchy and price of stability of the popular matching problem.
Resumo:
A new mixed-matrix membrane based on stabilized phosphotungstic acid (PTA) incorporated to chitosan (CS)-hydroxy ethyl cellulose (HEC) for application in direct methanol fuel cells (DMFCs) is reported. Membranes are characterised using Fourier Transform Spectroscopy (FTIR), Thermo-Gravimetric Analysis (TGA), Scanning Electron Microscopy (SEM) and their mechanical properties are evaluated. The PTA content in the CS-HEC blend and its influence on proton conductivity, water/methanol sorption, and methanol cross-over in the DMFC is studied. The DMFC with 3 wt. % stabilized PTA-CS-HEC mixed-matrix membrane delivers peak power-density of 58 mW/cm(2) at a load current-density of 210 mA/cm(2) with a lower methanol cross-over than that observed for a DMFC operating with a Nafion membrane electrolyte.
Resumo:
Stationary crack tip fields in bulk metallic glasses under mixed mode (I and II) loading are studied through detailed finite element simulations assuming plane strain, small scale yielding conditions. The influence of internal friction or pressure sensitivity on the plastic zones. notch deformation, stress and plastic strain fields is examined for different mode mixities. Under mixed mode loading, the notch deforms into a shape such that one part of its surface sharpens while the other part blunts. Increase in mode If component of loading dramatically enhances the normalized plastic zone size, lowers the stresses but significantly elevates the plastic strain levels near the notch tip. Higher internal friction reduces the peak tangential stress but increases the plastic strain and stretching near the blunted part of the notch. The simulated shear bands are straight and extend over a long distance ahead of the notch tip under mode II dominant loading. The possible variations of fracture toughness with mode mixity corresponding to failure by brittle micro-cracking and ductile shear banding are predicted employing two simple fracture criteria. The salient results from finite element simulations are validated by comparison with those from mixed mode (I and II) fracture experiments on a Zr-based bulk metallic glass.
Resumo:
The steady MHD mixed convection flow of a viscoelastic fluid in the vicinity of two-dimensional stagnation point with magnetic field has been investigated under the assumption that the fluid obeys the upper-convected Maxwell (UCM) model. Boundary layer theory is used to simplify the equations of motion. induced magnetic field and energy which results in three coupled non-linear ordinary differential equations which are well-posed. These equations have been solved by using finite difference method. The results indicate the reduction in the surface velocity gradient, surface heat transfer and displacement thickness with the increase in the elasticity number. These trends are opposite to those reported in the literature for a second-grade fluid. The surface velocity gradient and heat transfer are enhanced by the magnetic and buoyancy parameters. The surface heat transfer increases with the Prandtl number, but the surface velocity gradient decreases.
Resumo:
Solvothermal treatment of an equimolar mixture of Co(NO3)(2)center dot 6H(2)O, HCONH2 and NaN3 in MeOH at 100 degrees C yielded a three-dimensional NaCl type network Co(HCOO)(2)(HCONH2)(2) center dot HCONH2 (1a) containing formamides in the pores of the structure. Solvated pink 1a undergoes single crystal-to-single crystal (SCSC) transformation at 215 degrees C to form the desolvated dark brown product Co(HCOO)(2)-( HCONH2)(2) (1b) with the retention of the original framework. Reversible single crystal-to-single crystal transformation of 1b (brown) to 1a (pink) in the presence of excess formamide was also established at room temperature. The coordination environment around Co(II) in both 1a and 1b is octahedral with a CoN2O4 coordination composition. A similar reaction replacing Co(II) by Cr(III) produced a heterometallic 3D extended network Na[Cr(HCOO)(4)(HCONH2)(2)]center dot 2H(2)O (2a) at 100 degrees C. An increase in reaction temperature to 150 degrees C produced a simple mononuclear complex Cr(HCOO)(3)(HCONH2)(3) center dot 3H(2)O (2b). Variable temperature magnetic studies revealed the presence of a canting phenomena in both 1a and 1b, and hysteresis loop in the field dependent magnetisation plot at 2 K whereas complex 2a is simply paramagnetic in nature.
Resumo:
The origin of the extragalactic gamma-ray background (EGRB) is still an open question, even nearly forty years after its discovery. The emission could originate either from truly diffuse processes or from unresolved point sources. Although the majority of the 271 point sources detected by EGRET (Energetic Gamma Ray Experiment Telescope) are unidentified, of the identified sources, blazars are the dominant candidates. Therefore, unresolved blazars may be considered the main contributor to the EGRB, and many studies have been carried out to understand their distribution, evolution and contribution to the EGRB. Considering that gamma-ray emission comes mostly from jets of blazars and that the jet emission decreases rapidly with increasing jet to line-of-sight angle, it is not surprising that EGRET was not able to detect many large inclination angle active galactic nuclei (AGNs). Though Fermi could only detect a few large inclination angle AGNs during the first three months of its survey, it is expected to detect many such sources in the near future. Since non-blazar AGNs are expected to have higher density as compared to blazars, these could also contribute significantly to the EGRB. In this paper, we discuss contributions from unresolved discrete sources including normal galaxies, starburst galaxies, blazars and off-axis AGNs to the EGRB.
Resumo:
Tangible physical systems are more intuitive than Intangible virtual Systems. Mixed reality systems are considered as an alternative to virtual systems, bringing advantages of tangible systems into an interaction. However, past research has mainly focussed on technical aspects of incorporating pervasive-ness and immersive-ness in the virtual systems. This paper reports on an empirical study of intuitive Interaction in a Mixed Reality game system for children and the design aspects that could facilitate intuitive Interaction in such systems. A related samples Friedman’s test showed that the Mixed Reality game system demonstrated more intuitive interactions than non-intuitive Interactions. A linear regression analysis further established that the variation in intuitive Interaction in the Mixed Reality system could be statistically significantly explained primarily by physical affordances offered by the Mixed Reality system and to a lesser extent by the perceived affordances in the system. Design guidelines to develop intuitive Mixed Reality systems are discussed. These guidelines should allow designers to exploit the wonders of advances in technology and at the same time allow users to directly interact with the physical real world. This will allow users to access maximal physical affordances, which are primary contributors to intuitive interaction in Tangible and Mixed Reality systems.
Resumo:
We consider the problem of transmission of correlated discrete alphabet sources over a Gaussian Multiple Access Channel (GMAC). A distributed bit-to-Gaussian mapping is proposed which yields jointly Gaussian codewords. This can guarantee lossless transmission or lossy transmission with given distortions, if possible. The technique can be extended to the system with side information at the encoders and decoder.
Resumo:
We present a signal processing approach using discrete wavelet transform (DWT) for the generation of complex synthetic aperture radar (SAR) images at an arbitrary number of dyadic scales of resolution. The method is computationally efficient and is free from significant system-imposed limitations present in traditional subaperture-based multiresolution image formation. Problems due to aliasing associated with biorthogonal decomposition of the complex signals are addressed. The lifting scheme of DWT is adapted to handle complex signal approximations and employed to further enhance the computational efficiency. Multiresolution SAR images formed by the proposed method are presented.
Resumo:
We derive expressions for convolution multiplication properties of discrete cosine transform II (DCT II) starting from equivalent discrete Fourier transform (DFT) representations. Using these expressions, a method for implementing linear filtering through block convolution in the DCT II domain is presented. For the case of nonsymmetric impulse response, additional discrete sine transform II (DST II) is required for implementing the filter in DCT II domain, where as for a symmetric impulse response, the additional transform is not required. Comparison with recently proposed circular convolution technique in DCT II domain shows that the proposed new method is computationally more efficient.
Resumo:
Mixed-species flocks of foraging birds have been documented from terrestrial habitats all over the world and are thought to form for either improved feeding efficiency or better protection from predators. Two kinds of flock participants are recognized: those that join other species ('followers') and are therefore likely to be the recipients of the benefits of flock participation and those that are joined ('leaders'). Through comparative analyses, using a large sample of flocks from around the world, we show that (1) 'followers' tend to be smaller, more insectivorous, and feed in higher strata than matched species that participate in flocks to a lesser extent and (2) 'leaders' tend to be cooperative breeders more often than matched species that are not known to lead flocks. Furthermore, meta-analyses of published results from across the world showed that bird species in terrestrial mixed-species flocks increase foraging rates and reduce vigilance compared to when they are solitary or in conspecific groups. Moreover, the increase in foraging rates is seen only with flock followers and not flock leaders. These findings suggest a role for predation in the evolution of mixed-species flocking. Species that are vulnerable to predation follow species whose vigilance they can exploit. By doing so, they are able to reduce their own vigilance and forage at higher rates. (C) 2009 The Association for the Study of Animal Behaviour. Published by Elsevier Ltd. All rights reserved.
Resumo:
We propose certain discrete parameter variants of well known simulation optimization algorithms. Two of these algorithms are based on the smoothed functional (SF) technique while two others are based on the simultaneous perturbation stochastic approximation (SPSA) method. They differ from each other in the way perturbations are obtained and also the manner in which projections and parameter updates are performed. All our algorithms use two simulations and two-timescale stochastic approximation. As an application setting, we consider the important problem of admission control of packets in communication networks under dependent service times. We consider a discrete time slotted queueing model of the system and consider two different scenarios - one where the service times have a dependence on the system state and the other where they depend on the number of arrivals in a time slot. Under our settings, the simulated objective function appears ill-behaved with multiple local minima and a unique global minimum characterized by a sharp dip in the objective function in a small region of the parameter space. We compare the performance of our algorithms on these settings and observe that the two SF algorithms show the best results overall. In fact, in many cases studied, SF algorithms converge to the global minimum.
Resumo:
We evaluate the mixed partition function for dyonic BPS black holes using the recently proposed degeneracy formula for the STU model. The result factorizes into the OSV mixed partition function times a proportionality factor. The latter is in agreement with the measure factor that was recently conjectured for a class of N = 2 black holes that contains the STU model.
Resumo:
The unsteady mixed convection flow of an incompressible laminar electrically conducting fluid over an impulsively stretched permeable vertical surface in an unbounded quiescent fluid in the presence of a transverse magnetic field has been investigated. At the same time, the surface temperature is suddenly increased from the surrounding fluid temperature or a constant heat flux is suddenly imposed on the surface. The problem is formulated in such a way that for small time it is governed by Rayleigh type of equation and for large time by Crane type of equation. The non-linear coupled parabolic partial differential equations governing the unsteady mixed convection flow under boundary layer approximations have been solved analytically by using the homotopy analysis method as well as numerically by an implicit finite difference scheme. The local skin friction coefficient and the local Nusselt number are found to decrease rapidly with time in a small time interval and they tend to steady-state values for t* >= 5. They also increase with the buoyancy force and suction, but decrease with injection rate. The local skin friction coefficient increases with the magnetic field, but the local Nusselt number decreases. There is a smooth transition from the unsteady state to the steady state. (C) 2010 Elsevier Ltd. All rights reserved.