921 resultados para MITIGATION
Resumo:
Operational approaches have been more and more widely developed and used for providing marine data and information services for different socio-economic sectors of the Blue Growth and to advance knowledge about the marine environment. The objective of operational oceanographic research is to develop and improve the efficiency, timeliness, robustness and product quality of this approach. This white paper aims to address key scientific challenges and research priorities for the development of operational oceanography in Europe for the next 5-10 years. Knowledge gaps and deficiencies are identified in relation to common scientific challenges in four EuroGOOS knowledge areas: European Ocean Observations, Modelling and Forecasting Technology, Coastal Operational Oceanography and Operational Ecology. The areas "European Ocean Observations" and "Modelling and Forecasting Technology" focus on the further advancement of the basic instruments and capacities for European operational oceanography, while "Coastal Operational Oceanography" and "Operational Ecology" aim at developing new operational approaches for the corresponding knowledge areas.
Resumo:
Lexical combinations of at least two roots around "carbon" as the hub, such as "carbon finance" or "carbon footprint," have recently become ubiquitous in English-speaking science, politics, and mass media. They are part of a new language evolving around the issue of climate change that can reveal how it is framed by various stakeholders. In this article, the authors study the role of these "carbon compounds" as tools of communication in different online discourses on climate change mitigation. By combining a quantitative analysis of their occurrences with a qualitative analysis of the contexts in which the compounds were used, the authors identify three clusters of compounds focused on finance, lifestyle, and attitudes and elucidate the communicative purposes to which they were put between the 1990s and the early 21st century. This approach may open up new ways of analyzing the framings of climate change mitigation initiatives in the public sphere.
Resumo:
Although mitigating GHG emissions is necessary to reduce the overall negative climate change impacts on crop yields and agricultural production, certain mitigation measures may generate unintended consequences to food availability and access due to land use competition and economic burden of mitigation. Prior studies have examined the co-impacts on food availability and global producer prices caused by alternative climate policies. More recent studies have looked at the reduction in total caloric intake driven by both changing income and changing food prices under one specific climate policy. However, due to inelastic calorie demand, consumers’ well-being are likely further reduced by increased food expenditures. Built upon existing literature, my dissertation explores how alternative climate policy designs might adversely affect both caloric intake and staple food budget share to 2050, by using the Global Change Assessment Model (GCAM) and a post-estimated metric of food availability and access (FAA). My dissertation first develop a set of new metrics and methods to explore new perspectives of food availability and access under new conditions. The FAA metric consists of two components, the fraction of GDP per capita spent on five categories of staple food and total caloric intake relative to a reference level. By testing the metric against alternate expectations of the future, it shows consistent results with previous studies that economic growth dominates the improvement of FAA. As we increase our ambition to achieve stringent climate targets, two policy conditions tend to have large impacts on FAA driven by competing land use and increasing food prices. Strict conservation policies leave the competition between bioenergy and agriculture production on existing commercial land, while pricing terrestrial carbon encourages large-scale afforestation. To avoid unintended outcomes to food availability and access for the poor, pricing land emissions in frontier forests has the advantage of selecting more productive land for agricultural activities compared to the full conservation approach, but the land carbon price should not be linked to the price of energy system emissions. These results are highly relevant to effective policy-making to reduce land use change emissions, such as the Reduced Emissions from Deforestation and Forest Degradation (REDD).
Resumo:
This paper addresses a potential role that tariffs and tariff policy can play in encouraging countries to take part in a multilateral effort to mitigate climate change. It begins by assessing whether increasing tariffs on products from energy intensive or polluting industries amounts to a violation of WTO rules and whether protectionism in this case can be differentiated from genuine environmental concerns. It then argues that while lowering tariffs for environmental goods can serve as a carrot to promote dissemination of cleaner technologies, tariff deconsolidation is a legitimate stick to encourage polluting countries to move towards an international climate agreement. The paper further explores this view by undertaking a partialequilibrium simulation analysis to examine the impact of a unilateral unit increase in tariffs on the imports of the most carbon-intensive products from countries not committed to climate polices. Our results suggest that the committed importing countries would have to raise their tariffs only slightly to effect a significant decline in the imports of these products from the non-committed countries. For instance, a unit increase in the simple average applied tariffs on the imports of these carbon-intensive products in 2005 from our sample of non-committed exporting countries would reduce the imports of these products by an average 32.6% in Australia, 178% in Canada, 195% in the EU, 271% in Japan and 62% in the US, therebysuggesting the effectiveness of such a measure in pushing countries towards a global climate policy.
Resumo:
Persistent daily congestion has been increasing in recent years, particularly along major corridors during selected periods in the mornings and evenings. On certain segments, these roadways are often at or near capacity. However, a conventional Predefined control strategy did not fit the demands that changed over time, making it necessary to implement the various dynamical lane management strategies discussed in this thesis. Those strategies include hard shoulder running, reversible HOV lanes, dynamic tolls and variable speed limit. A mesoscopic agent-based DTA model is used to simulate different strategies and scenarios. From the analyses, all strategies aim to mitigate congestion in terms of the average speed and average density. The largest improvement can be found in hard shoulder running and reversible HOV lanes while the other two provide more stable traffic. In terms of average speed and travel time, hard shoulder running is the most congested strategy for I-270 to help relieve the traffic pressure.
Resumo:
This dissertation examines the quality of hazard mitigation elements in a coastal, hazard prone state. I answer two questions. First, in a state with a strong mandate for hazard mitigation elements in comprehensive plans, does plan quality differ among county governments? Second, if such variation exists, what drives this variation? My research focuses primarily on Florida’s 35 coastal counties, which are all at risk for hurricane and flood hazards, and all fall under Florida’s mandate to have a comprehensive plan that includes a hazard mitigation element. Research methods included document review to rate the hazard mitigation elements of all 35 coastal county plans and subsequent analysis against demographic and hazard history factors. Following this, I conducted an electronic, nationwide survey of planning professionals and academics, informed by interviews of planning leaders in Florida counties. I found that hazard mitigation element quality varied widely among the 35 Florida coastal counties, but were close to a normal distribution. No plans were of exceptionally high quality. Overall, historical hazard effects did not correlate with hazard mitigation element quality, but some demographic variables that are associated with urban populations did. The variance in hazard mitigation element quality indicates that while state law may mandate, and even prescribe, hazard mitigation in local comprehensive plans, not all plans will result in equal, or even adequate, protection for people. Furthermore, the mixed correlations with demographic variables representing social and disaster vulnerability shows that, at least at the county level, vulnerability to hazards does not have a strong effect on hazard mitigation element quality. From a theory perspective, my research is significant because it compares assumptions about vulnerability based on hazard history and demographics to plan quality. The only vulnerability-related variables that appeared to correlate, and at that mildly so, with hazard mitigation element quality, were those typically representing more urban areas. In terms of the theory of Neo-Institutionalism and theories related to learning organizations, my research shows that planning departments appear to have set norms and rules of operating that preclude both significant public involvement and learning from prior hazard events.
Resumo:
Expected damages of environmental risks depend both on their intensities and probabilities. There is very little control over probabilities of climate related disasters such as hurricanes. Therefore, researchers of social science are interested identifying preparation and mitigation measures that build human resilience to disasters and avoid serious loss. Conversely, environmental degradation, which is a process through which the natural environment is compromised in some way, has been accelerated by human activities. As scientists are finding effective ways on how to prevent and reduce pollution, the society often fails to adopt these effective preventive methods. Researchers of psychological and contextual characterization offer specific lessons for policy interventions that encourage human efforts to reduce pollution. This dissertation addresses four discussions of effective policy regimes encouraging pro-environmental preference in consumption and production, and promoting risk mitigation behavior in the face of natural hazards. The first essay describes how the speed of adoption of environment friendly technologies is driven largely by consumers’ preferences and their learning dynamics rather than producers’ choice. The second essay is an empirical analysis of a choice experiment to understand preferences for energy efficient investments. The empirical analysis suggests that subjects tend to increase energy efficient investment when they pay a pollution tax proportional to the total expenditure on energy consumption. However, investments in energy efficiency seem to be crowded out when subjects have the option to buy health insurance to cover pollution related health risks. In context of hurricane risk mitigation and in evidence of recently adopted My Safe Florida Home (MSFH) program by the State of Florida, the third essay shows that households with home insurance, prior experience with damages, and with a higher sense of vulnerability to be affected by hurricanes are more likely to allow home inspection to seek mitigation information. The fourth essay evaluates the impact of utility disruption on household well being based on the responses of a household-level phone survey in the wake of hurricane Wilma. Findings highlight the need for significant investment to enhance the capacity of rapid utility restoration after a hurricane event in the context of South Florida.
Resumo:
The damage Hurricane Sandy caused had far-reaching repercussions up and down the East Coast of the United States. Vast coastal flooding accompanied the storm, inundating homes, businesses, and utility and emergency facilities. Since the storm, projects to mitigate similar future floods have been scrutinized. Such projects not only need to keep out floodwaters but also be designed to withstand the effect that climate change might have on rising sea levels and increased flood risk. In this study, we develop an economic model to assess the costs and benefits of a berm (sea wall) to mitigate the effects of flooding from a large storm. We account for the lifecycle costs of the project, which include those for the upfront construction of the berm, ongoing maintenance, land acquisition, and wetland and recreation zone construction. Benefits of the project include avoided fatalities, avoided residential and commercial damages, avoided utility and municipal damages, recreational and health benefits, avoided debris removal expenses, and avoided loss of function of key transportation and commercial infrastructure located in the area. Our estimate of the beneficial effects of the berm includes ecosystem services from wetlands and health benefits to the surrounding community from a park and nature system constructed along the berm. To account for the effects of climate change and verify that the project will maintain its effectiveness over the long term, we allow the risk of flooding to increase over time. Over our 50-year time horizon, we double the risk of 100- and 500-year flood events to account for the effects of sea level rise on coastal flooding. Based on the economic analysis, the project is highly cost beneficial over its 50-year timeframe. This analysis demonstrates that climate change adaptation investments can be cost beneficial even though they mitigate the impacts of low-probability, high-consequence events.
Resumo:
Beef production can be environmentally detrimental due in large part to associated enteric methane (CH4) production, which contributes to climate change. However, beef production in well-managed grazing systems can aid in soil carbon sequestration (SCS), which is often ignored when assessing beef production impacts on climate change. To estimate the carbon footprint and climate change mitigation potential of upper Midwest grass-finished beef production systems, we conducted a partial life cycle assessment (LCA) comparing two grazing management strategies: 1) a non-irrigated, lightly-stocked (1.0 AU/ha), high-density (100,000 kg LW/ha) system (MOB) and 2) an irrigated, heavily-stocked (2.5 AU/ha), low-density (30,000 kg LW/ha) system (IRG). In each system, April-born steers were weaned in November, winter-backgrounded for 6 months and grazed until their endpoint the following November, with average slaughter age of 19 months and a 295 kg hot carcass weight. As the basis for the LCA, we used two years of data from Lake City Research Center, Lake City, MI. We included greenhouse gas (GHG) emissions associated with enteric CH4, soil N2O and CH4 fluxes, alfalfa and mineral supplementation, and farm energy use. We also generated results from the LCA using the enteric emissions equations of the Intergovernmental Panel on Climate Change (IPCC). We evaluated a range of potential rates of soil carbon (C) loss or gain of up to 3 Mg C ha-1 yr-1. Enteric CH4 had the largest impact on total emissions, but this varied by grazing system. Enteric CH4 composed 62 and 66% of emissions for IRG and MOB, respectively, on a land basis. Both MOB and IRG were net GHG sources when SCS was not considered. Our partial LCA indicated that when SCS potential was included, each grazing strategy could be an overall sink. Sensitivity analyses indicated that soil in the MOB and IRG systems would need to sequester 1 and 2 Mg C ha-1 yr-1 for a net zero GHG footprint, respectively. IPCC model estimates for enteric CH4 were similar to field estimates for the MOB system, but were higher for the IRG system, suggesting that 0.62 Mg C ha-1 yr-1 greater SCS would be needed to offset the animal emissions in this case.
Resumo:
This is a list of some basic installation requirements and recommendations that your contractor should meet when installing a radon reduction system in your home.
Resumo:
Les méthodes de design et de construction des routes développés dans le sud canadien ont maintenant besoin d’être adaptés aux environnements nordiques du pays afin de prévenir le dégel dramatique du pergélisol lors de la construction d’une nouvelle route. De plus, le réchauffement climatique occasionne présentement d’importants problèmes de stabilité des sols dans le nord canadien. Ces facteurs causent des pertes importantes au niveau des capacités fonctionnelles et structurales de l’Alaska Highway au Yukon sur un segment de plus de 200 km situé entre le village de Destruction Bay et la frontière de l’Alaska. Afin de trouver des solutions rentables à long terme, le ministère du transport du Yukon (en collaboration avec le Federal Highway Administration du gouvernement américain, Transports Canada, l’Université Laval, l’Université de Montréal et l’Alaska University transportation Center) a mis en place 12 sections d’essais de 50 mètres de longueur sur l’autoroute de l’Alaska près de Beaver Creek en 2008. Ces différentes sections d’essais ont été conçues pour évaluer une ou plusieurs méthodes combinées de stabilisation thermique telles que le drain thermique, le remblai à convection d’air, le pare-neige / pare-soleil, le remblai couvert de matières organiques, les drains longitudinaux, le déblaiement de la neige sur les pentes et la surface réfléchissante. Les objectifs spécifiques de la recherche sont 1) d’établir les régimes thermiques et les flux de chaleur dans chacune des sections pour les 3 premières années de fonctionnement ; 2) de documenter les facteurs pouvant favoriser ou nuire à l’efficacité des systèmes de protection et ; 3) de déterminer le rapport coûts/bénéfices à long terme pour chacune des techniques utilisées. Pour ce faire, une nouvelle méthode d’analyse, basée sur la mesure de flux d’extraction de chaleur Hx et d’induction Hi à l’interface entre le remblai et le sol naturel, a été utilisée dans cette étude. Certaines techniques de protection du pergélisol démontrent un bon potentiel durant leurs 3 premières années de fonctionnement. C’est le cas pour le remblai à convection d’air non-couvert, le remblai à convection d’air pleine largeur, les drains longitudinaux, le pare-soleil / pare-neige et la surface réfléchissante. Malheureusement, des problèmes dans l’installation des drains thermiques ont empêché une évaluation complète de leur efficacité.
Resumo:
Several biosurfactants with antagonistic activity are produced by a variety of microorganisms. Lipopeptides (LPPs) produced by some Bacillus strains, including surfactin, fengycin and iturin are synthesized nonribosomally by mega-peptide synthetase (NRPS) units and they are particularly relevant as antifungal agents. Characterisation, identification and evaluation of the potentials of several bacterial isolates were undertaken in order to establish the production of active lipopeptides against biodeteriogenic fungi from heritage assets. Analysis of the iturin operon revealed four open reading frames (ORFs) with the structural organisation of the peptide synthetases. Therefore, this work adopted a molecular procedure to access antifungal potential of LPP production by Bacillus strains in order to exploit the bioactive compounds synthesis as a green natural approach to be applied in biodegraded cultural heritage context. The results reveal that the bacterial strains with higher antifungal potential exhibit the same morphological and biochemical characteristics, belonging to the genera Bacillus. On the other hand, the higher iturinic genetic expression, for Bacillus sp. 3 and Bacillus sp. 4, is in accordance with the culture antifungal spectra. Accordingly, the adopted methodology combining antifungal screening and molecular data is represent a valuable tool for quick identification of iturin-producing strains, constituting an effective approach for confirming the selection of lipopeptides producer strains.
Resumo:
Easel paintings have undergone biodeterioration processes due to microbiological agents proliferation, particularly by development of fungal strains that are associated to biofilms formation and microstructure disintegration of these artworks, due to a wide diversity of available nutrients. Thus, mitigation strategies, using green and non-toxic biocides, which eliminate and prevent the microbiological contamination of these cultural assets are in progress.
Resumo:
2015
Resumo:
Research networks provide a framework for review, synthesis and systematic testing of theories by multiple scientists across international borders critical for addressing global-scale issues. In 2012, a GHG research network referred to as MAGGnet (Managing Agricultural Greenhouse Gases Network) was established within the Croplands Research Group of the Global Research Alliance on Agricultural Greenhouse Gases (GRA). With involvement from 46 alliance member countries, MAGGnet seeks to provide a platform for the inventory and analysis of agricultural GHG mitigation research throughout the world. To date, metadata from 315 experimental studies in 20 countries have been compiled using a standardized spreadsheet. Most studies were completed (74%) and conducted within a 1-3-year duration (68%). Soil carbon and nitrous oxide emissions were measured in over 80% of the studies. Among plant variables, grain yield was assessed across studies most frequently (56%), followed by stover (35%) and root (9%) biomass. MAGGnet has contributed to modeling efforts and has spurred other research groups in the GRA to collect experimental site metadata using an adapted spreadsheet. With continued growth and investment, MAGGnet will leverage limited-resource investments by any one country to produce an inclusive, globally shared meta-database focused on the science of GHG mitigation.