927 resultados para Máquina
Resumo:
The objective of this work is to use algorithms known as Boltzmann Machine to rebuild and classify patterns as images. This algorithm has a similar structure to that of an Artificial Neural Network but network nodes have stochastic and probabilistic decisions. This work presents the theoretical framework of the main Artificial Neural Networks, General Boltzmann Machine algorithm and a variation of this algorithm known as Restricted Boltzmann Machine. Computer simulations are performed comparing algorithms Artificial Neural Network Backpropagation with these algorithms Boltzmann General Machine and Machine Restricted Boltzmann. Through computer simulations are analyzed executions times of the different described algorithms and bit hit percentage of trained patterns that are later reconstructed. Finally, they used binary images with and without noise in training Restricted Boltzmann Machine algorithm, these images are reconstructed and classified according to the bit hit percentage in the reconstruction of the images. The Boltzmann machine algorithms were able to classify patterns trained and showed excellent results in the reconstruction of the standards code faster runtime and thus can be used in applications such as image recognition.
Resumo:
Variable reluctance motors have been increasingly used as an alternative for variable speed and high speed drives in many industrial applications, due to many advantages like the simplicity of construction, robustness, and low cost. The most common applications in recent years are related to aeronautics, electric and hybrid vehicles and wind power generation. This paper explores the theory, operation, design procedures and analysis of a variable reluctance machine. An iterative design methodology is introduced and used to design a 1.25 kW prototype. For the analysis of the machine two methods are used, an analytical method and the finite element simulation. The results obtained by both methods are compared. The results of finite element simulation are used to determine the inductance profiles and torque of the prototype. The magnetic saturation is examined visually and numerically in four critical points of the machine. The data collected in the simulation allow the verification of design and operating limits for the prototype. Moreover, the behavior of the output quantities is analyzed (inductance, torque and magnetic saturation) by variation of physical dimensions of the motor. Finally, a multiobjective optimization using Differential Evolution algorithms and Genetic Algorithms for switched reluctance machine design is proposed. The optimized variables are rotor and stator polar arcs, and the goals are to maximize the average torque, the average torque per copper losses and the average torque per core volume. Finally, the initial design and optimized design are compared.
Resumo:
A number of studies in the areas of Biomedical Engineering and Health Sciences have employed machine learning tools to develop methods capable of identifying patterns in different sets of data. Despite its extinction in many countries of the developed world, Hansen’s disease is still a disease that affects a huge part of the population in countries such as India and Brazil. In this context, this research proposes to develop a method that makes it possible to understand in the future how Hansen’s disease affects facial muscles. By using surface electromyography, a system was adapted so as to capture the signals from the largest possible number of facial muscles. We have first looked upon the literature to learn about the way researchers around the globe have been working with diseases that affect the peripheral neural system and how electromyography has acted to contribute to the understanding of these diseases. From these data, a protocol was proposed to collect facial surface electromyographic (sEMG) signals so that these signals presented a high signal to noise ratio. After collecting the signals, we looked for a method that would enable the visualization of this information in a way to make it possible to guarantee that the method used presented satisfactory results. After identifying the method's efficiency, we tried to understand which information could be extracted from the electromyographic signal representing the collected data. Once studies demonstrating which information could contribute to a better understanding of this pathology were not to be found in literature, parameters of amplitude, frequency and entropy were extracted from the signal and a feature selection was made in order to look for the features that better distinguish a healthy individual from a pathological one. After, we tried to identify the classifier that best discriminates distinct individuals from different groups, and also the set of parameters of this classifier that would bring the best outcome. It was identified that the protocol proposed in this study and the adaptation with disposable electrodes available in market proved their effectiveness and capability of being used in different studies whose intention is to collect data from facial electromyography. The feature selection algorithm also showed that not all of the features extracted from the signal are significant for data classification, with some more relevant than others. The classifier Support Vector Machine (SVM) proved itself efficient when the adequate Kernel function was used with the muscle from which information was to be extracted. Each investigated muscle presented different results when the classifier used linear, radial and polynomial kernel functions. Even though we have focused on Hansen’s disease, the method applied here can be used to study facial electromyography in other pathologies.
Resumo:
A number of studies in the areas of Biomedical Engineering and Health Sciences have employed machine learning tools to develop methods capable of identifying patterns in different sets of data. Despite its extinction in many countries of the developed world, Hansen’s disease is still a disease that affects a huge part of the population in countries such as India and Brazil. In this context, this research proposes to develop a method that makes it possible to understand in the future how Hansen’s disease affects facial muscles. By using surface electromyography, a system was adapted so as to capture the signals from the largest possible number of facial muscles. We have first looked upon the literature to learn about the way researchers around the globe have been working with diseases that affect the peripheral neural system and how electromyography has acted to contribute to the understanding of these diseases. From these data, a protocol was proposed to collect facial surface electromyographic (sEMG) signals so that these signals presented a high signal to noise ratio. After collecting the signals, we looked for a method that would enable the visualization of this information in a way to make it possible to guarantee that the method used presented satisfactory results. After identifying the method's efficiency, we tried to understand which information could be extracted from the electromyographic signal representing the collected data. Once studies demonstrating which information could contribute to a better understanding of this pathology were not to be found in literature, parameters of amplitude, frequency and entropy were extracted from the signal and a feature selection was made in order to look for the features that better distinguish a healthy individual from a pathological one. After, we tried to identify the classifier that best discriminates distinct individuals from different groups, and also the set of parameters of this classifier that would bring the best outcome. It was identified that the protocol proposed in this study and the adaptation with disposable electrodes available in market proved their effectiveness and capability of being used in different studies whose intention is to collect data from facial electromyography. The feature selection algorithm also showed that not all of the features extracted from the signal are significant for data classification, with some more relevant than others. The classifier Support Vector Machine (SVM) proved itself efficient when the adequate Kernel function was used with the muscle from which information was to be extracted. Each investigated muscle presented different results when the classifier used linear, radial and polynomial kernel functions. Even though we have focused on Hansen’s disease, the method applied here can be used to study facial electromyography in other pathologies.
Resumo:
El objetivo del presente trabajo es el diseño de una máquina para ensayos de Creep, con capacidad de aplicar carga variable. Se busca una máquina liviana, desmontable y fácilmente transportable entre laboratorios. El diseño de la máquina parte de una ingeniería básica, pasando por una etapa de detalle y finalizando en la fabricación y montaje de la misma. Se incluye en el diseño un sistema de adquisición y control de carga. Se diseñó y construyó una máquina accionada por resorte capaz de aplicar 5 kN. Se evalúa su respuesta ante distintos programas de carga. El control de carga es capaz de seguir referencias con evolución suave en el tiempo sin mayores dificultades y mantener la carga constante durante intervalos largos de tiempo. La adquisición de datos se realiza mediante un módulo QuantumX y transductores de desplazamiento y carga HBM.
Resumo:
El objetivo del presente trabajo es el diseño de una máquina para ensayos de Creep, con capacidad de aplicar carga variable. Se busca una máquina liviana, desmontable y fácilmente transportable entre laboratorios. El diseño de la máquina parte de una ingeniería básica, pasando por una etapa de detalle y finalizando en la fabricación y montaje de la misma. Se incluye en el diseño un sistema de adquisición y control de carga. Se diseñó y construyó una máquina accionada por resorte capaz de aplicar 5 kN. Se evalúa su respuesta ante distintos programas de carga. El control de carga es capaz de seguir referencias con evolución suave en el tiempo sin mayores dificultades y mantener la carga constante durante intervalos largos de tiempo. La adquisición de datos se realiza mediante un módulo QuantumX y transductores de desplazamiento y carga HBM.
Resumo:
La presente invención se refiere a una máquina clasificadora de reducidas dimensiones, movible y fácil de transportar, que realiza la clasificación en función del peso, calibre y color, para su utilización en la clasificación de pequeños volúmenes de productos. La máquina se caracteriza por tener una estructura circular que gira en torno a un eje vertical, desplazando unas cazoletas sobre las que se reciben los productos a clasificar. Estas cazoletas presentan diferentes posiciones a lo largo de la trayectoria circular que describen, condicionadas por una guía perimetral sobre la que se apoyan y por los criterios de clasificación establecidos. Los productos a clasificar entran en la máquina objeto de la invención, mediante un sistema de alimentación colocado tangencialmente al aro clasificador, y son derivados por la salida correspondiente, al activarse el actuador que cierra las ranuras practicadas en el anillo guía.
Resumo:
Este dispositivo permite caracterizar de manera exacta y precisa el microrrelieve superficial. Dicho parámetro está directamente relacionado con procesos tan importantes como la erosión, escorrentía, distribución y tipo de agregados, propiedades térmicas y balance de energía, intercambios con la atmósfera, reflexión de la radiación solar y evaporación. La máquina posee un bastidor, el cual tiene la función de ser el soporte físico de los distintos sensores. El sistema de instrumentación y medida básicamente está formado por los sensores (dos potenciómetros, encargados del registro de las coordenadas "x", "y"; y un sensor láser de distancias, encargado de la adquisición de la coordenada "z"), el acondicionador de la señal del láser, el convertidor analógico-digital, la fuente de alimentación y un ordenador tipo PC portátil, encargado del control del proceso de toma de datos y del registro de la información.
Resumo:
Este dispositivo permite caracterizar de manera exacta y precisa la resistencia a la penetración de suelos, asegurando, una velocidad de penetración constante, con lo que se disminuyen las fuentes de error de los ensayos. La resistencia a la penetración es un parámetro muy utilizado para caracterizar el estado del suelo en cuanto a su compactación, traficabilidad, cohesión, dureza, etc. La máquina (penetrómetro) utiliza un motor eléctrico para clavar el vástago a velocidad constante en el suelo. Mediante una célula de carga y un sensor potenciométrico, se registra en cada punto la fuerza necesaria para introducir el vástago de punta cónica en el suelo.
Resumo:
Tesis (Ingeniero(a) en Automatización).--Universidad de La Salle. Facultad de Ingeniería. Programa de Ingeniería en Automatización, 2014
Resumo:
Tesis (Ingeniero(a) en Automatización).--Universidad de La Salle. Facultad de Ingeniería. Programa de Ingeniería en Automatización, 2015
Resumo:
Fondo Margaritainés Restrepo
Resumo:
Bogotá (Colombia): Universidad de La Salle. Facultad de Ingeniería. Programa de Ingeniería en Automatización