978 resultados para Luminescence of solids
Resumo:
Lanthanides represent the chemical elements from lanthanum to lutetium. They intrinsically exhibit some very exciting photophysical properties, which can be further enhanced by incorporating the lanthanide ion into organic or inorganic sensitizing structures. A very popular approach is to conjugate the lanthanide ion to an organic chromophore structure forming lanthanide chelates. Another approach, which has quickly gained interest, is to incorporate the lanthanide ions into nanoparticle structures, thus attaining improved specific activity and binding capacity. The lanthanide-based reporters usually express strong luminescence emission, multiple narrow emission lines covering a wide wavelength range, and exceptionally long excited state lifetimes enabling timeresolved detection. Because of these properties, the lanthanide-based reporters have found widespread applications in various fields of life. This study focuses on the field of bioanalytical applications. The aim of the study was to demonstrate the utility of different lanthanide-based reporters in homogeneous Förster resonance energy transfer (FRET)-based bioaffinity assays. Several different model assays were constructed. One was a competitive bioaffinity assay that utilized energy transfer from lanthanide chelate donors to fluorescent protein acceptors. In addition to the conventional FRET phenomenon, a recently discovered non-overlapping FRET (nFRET) phenomenon was demonstrated for the first time for fluorescent proteins. The lack of spectral overlap in the nFRET mechanism provides sensitivity and versatility to energy transfer-based assays. The distance and temperature dependence of these phenomena were further studied in a DNA-hybridization assay. The distance dependence of nFRET deviated from that of FRET, and unlike FRET, nFRET demonstrated clear temperature dependence. Based on these results, a possible excitation mechanism operating in nFRET was proposed. In the study, two enzyme activity assays for caspase-3 were also constructed. One of these was a fluorescence quenching-based enzyme activity assay that utilized novel inorganic particulate reporters called upconverting phosphors (UCPs) as donors. The use of UCPs enabled the construction of a simple, rather inexpensive, and easily automated assay format that had a high throughput rate. The other enzyme activity assay took advantage of another novel reporter class, the lanthanidebinding peptides (LBPs). In this assay, energy was transferred from a LBP to a green fluorescent protein (GFP). Using the LBPs it was possible to avoid the rather laborious, often poorly repeatable, and randomly positioned chemical labeling. In most of the constructed assays, time-resolved detection was used to eliminate the interfering background signal caused by autofluorescence. The improved signal-to-background ratios resulted in increased assay sensitivity, often unobtainable in homogeneous assay formats using conventional organic fluorophores. The anti-Stokes luminescence of the UCPs, however, enabled the elimination of autofluorescence even without time-gating, thus simplifying the instrument setup. Together, the studied reporters and assay formats pave the way for increasingly sensitive, simple, and easily automated bioanalytical applications.
Resumo:
Laskeutus on yksinkertainen ja teollisuudessa paljon käytetty erotusmenetelmä. Laskeutusta käytetään yleisimmin metalliteollisuudessa ja jätevesienkäsittelyssä. Laskeuttimen erotustehokkuutta voidaan parantaa esikäsittelemällä laskeutettavaa suspensiota. Laskeutusta on tutkittu hyvin laajasti teollisuudessa, koska laskeutus on menetelmänä helposti toteutettava ja energiatehokas. Työn kirjallisuusosassa käsitellään perusteet kiintoaineen laskeutumisesta fluidissa, tutustutaan laskeuttimiin ja esitellään suspension esikäsittelymenetelmät. Työn kokeellisessaosassa tutkitaan esikäsittelymenetelmien vaikutusta kalsiumkarbonaattilietteen laskeutumisnopeuteen. Tutkittavia esikäsittelymenetelmiä työn kokeellisessaosassa ovat flokkulaatio, lämpötilan ja pH:n muuttaminen. Laskeutuskokeet suoritettiin tilavuusosuudella 10 % olevalla kalsiumkarbonaattilietteellä. Tutkimuksen tarkoituksena oli tutkia tutkittavien esikäsittelymenetelmien vaikutusta lietteen laskeutumisnopeuteen ja löytää optimiolosuhteet työssä käytettävän kalsiumkarbonaattilietteen laskeutumisessa. Koetuloksista havaitaan, että flokkulaatio ja lämpötilan muuttaminen vaikuttavat tehoikkaimmin lietteen laskeutumisnopeuteen. Flokkulaatio ja lämpötilan kohottaminen lisäävät huomattavasti kiintoaineen laskeutumista. Lisätutkimusta tarvitaan laajemmalta pH alueelta optimiolosuhteiden löytämiseksi. Lisäksi jatkotutkimuksia eri flokkulanteilla tarvitaan lisää, jotta voidaan löytää paras flokkulantti laskeutumisprosessin tehostamiseksi.
Resumo:
Nowadays, the re-refining of the used lube oils has gained worldwide a lot of attention due to the necessity for added environmental protection and increasingly stringent environmental legislation. One of the parameters determining the quality of the produced base oils is the composition of feedstock. Estimation of the chemical composition of the used oil collected from several European locations showed that the hydrocarbon structure of the motor oil is changed insignificantly during its operation and the major part of the changes is accounted for with depleted oil additives. In the lube oil re-refining industry silicon, coming mainly from antifoaming agents, is recognized to be a contaminant generating undesired solid deposits in various locations in the re-refining units. In this thesis, a particular attention was paid to the mechanism of solid product formation during the alkali treatment process of silicon-containing used lube oils. The transformations of a model siloxane, tetramethyldisiloxane (TMDS), were studied in a batch reactor at industrially relevant alkali treatment conditions (low temperature, short reaction time) using different alkali agents. The reaction mechanism involving solid alkali metal silanolates was proposed. The experimental data obtained demonstrated that the solids were dominant products at low temperature and short reaction time. The liquid products in the low temperature reactions were represented mainly by linear siloxanes. The prolongation of reaction time resulted in reduction of solids, whereas both temperature and time increase led to dominance of cyclic products in the reaction mixture. Experiments with the varied reaction time demonstrated that the concentration of cyclic trimer being the dominant in the beginning of the reaction diminished with time, whereas the cyclic tetramer tended to increase. Experiments with lower sodium hydroxide concentration showed the same effect. In addition, a decrease of alkali agent concentration in the initial reaction mixture accelerated TMDS transformation reactions resulting in solely liquid cyclic siloxanes yields. Comparison of sodium and potassium hydroxides applied as an alkali agent demonstrated that potassium hydroxide was more efficient, since the activation energy in KOH presence was almost 2-fold lower than that for sodium hydroxide containing reaction mixture. Application of potassium hydroxide for TMDS transformation at 100° C with 3 hours reaction time resulted in 20 % decrease of solid yields compared to NaOH-containing mixture. Moreover, TMDS transformations in the presence of sodium silanolate applied as an alkali agent led to formation of only liquid products without formation of the undesired solids. On the basis of experimental data and the proposed reaction mechanism, a kinetic model was developed, which provided a satisfactory description of the experimental results. Suitability of the selected siloxane as a relevant model of industrial silicon-containing compounds was verified by investigation of the commercially available antifoam agent in base-catalyzed conditions.
Resumo:
Upconversion photoluminescence is a unique property of mostly certain inorganic materials, which are capable of converting low-energy infrared radiation into a higher-energy emission at visible wavelengths. This anti-Stokes shift enables luminescence detection without autofluorescence, which makes the upconverting materials a highly suitable reporter technology for optical biosensing applications. Furthermore, they exhibit long luminescence lifetime with narrow bandwidths also at the optical window of biomaterials enabling luminescence measurements in challenging sample matrices, such as whole blood. The aim of this thesis was to study the unique properties and the applicability of nano-sized upconverting phosphors (UCNPs) as reporters in biosensing applications. To render the inorganic nanophosphors water-dispersible and biocompatible, they were subjected to a series of surface modifications starting with silica-encapsulation and ending with a bioconjugation step with an analyte-recognizing biomolecule. The paramagnetism of the lanthanide dopants in the nanophosphors was exploited to develop a highly selective separation method for the UCNP-bioconjugates based on the magnetic selectivity of the high gradient magnetic separation (HGMS) system. The applicability of the nano-sized UCNPs as reporters in challenging sample matrices was demonstrated in two homogeneous sensing applications based on upconversion resonance energy transfer (UC-RET). A chemosensor for intracellular pH was developed exploiting UC-RET between the UCNP and a fluorogenic pH-sensitive dye with strongly increasing fluorescence intensity in decreasing pH. The pH-independent emission of the UCNPs at 550 nm was used for referencing. The applicability of the pH-nanosensor for intracellular pH measurement was tested in HeLa cells, and the acidic pH of endosomes could be detected with a confocal fluorescence microscope. Furthermore, a competitive UC-RET-based assay for red blood cell folic acid was developed for the measurement of folate directly from a whole blood sample. The optically transparent window of biomaterials was used in both the excitation and the measurement of the UC-RET sensitized emission of a near-infrared acceptor dye to minimize sample absorption, and the anti-Stokes detection completely eliminated the Stokes-shifted autofluorescence. The upconversion photoluminescence efficiency is known to be dependent on crystallite size, because the increasing surface-to-volume ratio of nano-sized UCNPs renders them more susceptible to quenching effects of the environment than their bulk counterpart. Water is known to efficiently quench the luminescence of lanthanide dopants. In this thesis, the quenching mechanism of water was studied using luminescence decay measurements. Water was found to quench the luminescence of UCNPs by increasing the non-radiative relaxation of the excited state of Yb3+ sensitizer ion, which had a very strong quenching effect on upconversion luminescence intensity.
Resumo:
Rheology is the science that studies the deformation and flow of solids and fluids under the influence of mechanical forces. The rheological measures of a product in the stage of manufacture can be useful in quality control. The microstructure of a product can also be correlated with its rheological behavior allowing for the development of new materials. Rheometry permits attainment of rheological equations applied in process engineering, particularly unit operations that involve heat and mass transfer. Consumer demands make it possible to obtain a product that complies with these requirements. Chocolate industries work with products in a liquid phase in conching, tempering, and also during pumping operations. A good design of each type of equipment is essential for optimum processing. In the design of every process, it is necessary to know the physical characteristics of the product. The rheological behavior of chocolate can help to know the characteristics of application of the product and its consumers. Foods are generally in a metastable state. Their texture depends on the structural changes that occur during processing. Molten chocolate is a suspension with properties that are strongly affected by particle characteristics including not only the dispersed particles but also the fat crystals formed during chocolate cooling and solidification. Chocolate rheology is extensively studied, and it is known that chocolate texture and stability is strongly affected by the presence of specific crystals
Resumo:
In this thesis, we present the results of our investigations on the photoconducting and electrical switching properties of selected chalcogenide glass systems. We have used XRD and X-ray photoelectron spectroscopy (XPS) analysis for confinuing the amorphous nature of these materials and for confirming their constituents respectively.Photoconductivity is the enhancement in electrical conductivity of materials brought about by the motion of charge carriers excited by absorbed radiation. The phenomenon involves absorption, photogeneration, recombination and transport processes and it gives good insight into the density of states in the energy gap of solids due to the presence of impurities and lattice defects. Photoconductivity measurements lead to the determination of such important parameters as quantum efficiency, photosensiti\'ity, spectral sensitivity and carrier lifetime. Extensive research work on photoconducting properties of amorphous semiconductors has resulted in the development of a variety of very sensitive photodetectors. Photoconductors are finding newer and newer uses eyery day. CdS, CdSe. Sb2S3, Se, ZnO etc, are typical photoconducting materials which are used in devices like vidicons, light amplifiers, xerography equipment etc.Electrical switching is another interesting and important property possessed by several Te based chalcogenides. Switching is the rapid and reversible transition between a highly resistive OFF state, driven by an external electric field and characterized by a threshold voltage, and a low resistivity ON state, Switching can be either threshold type or memory type. The phenomenon of switching could find applications in areas like infonnation storage, electrical power control etc. Investigations on electrical switching in chalcogenide glasses help in understanding the mechanism of switching which is necessary to select and modify materials for specific switching applications.Analysis of XRD pattern gives no further infonuation about amorphous materials than revealing their disordered structure whereas x-ray photoelectron spectroscopy,XPS) provides information about the different constituents present in the material. Also it gives binding energies (b.e.) of an element in different compounds and hence b.e. shift from the elemental form.Our investigations have been concentrated on the bulk glasses, Ge-In-Se, Ge-Bi-Se and As-Sb-Se for photoconductivity measurements and In-Te for electrical switching. The photoconducting properties of Ge-Sb-Se thin films prepared by sputtering technique have also been studied. The bulk glasses for the present investigations are prepared by the melt quenching technique and are annealed for half an hour at temperatures just below their respective glass transition temperatures. The dependence of photoconducting propenies on composition and temperature are investigated in each system. The electrical switching characteristics of In-Te system are also studied with different compositions and by varying the temperature.
Resumo:
The primary aim of these investigations was to probe the elecnuchemical and material science aspects of some selected metal phthalocyanines(MPcs).Metal phthalocyanines are characterised by a unique planar molecular structure. As a single class of compounds they have been the subject of ever increasing number of physicochemical and technological investigations. During the last two decades the literature on these compounds was flooded by an outpour of original publications and patents. Almost every branch of materials science has benefited by their application-swface coating, printing, electrophotography, photoelectrochemistry, electronics and medicine to name a few.The present study was confined to the electrical and electrochemical properties of cobalt, nickel, zinc. iron and copper phthalocyanines. The use of soluble Pes as corrosion inhibitor for aluminium was also investigated.In the introductory section of the thesis, the work done so far on MPcs is reviewed. In this review emphasis is given to their general methods of synthesis and the physicochemical properties.In phthalocyanine chemistry one of the formidable tasks is the isolation of singular species. In the second chapter the methods of synthesis and purification are presented with necessary experimental details.The studies on plasma modified films of CoPe, FePc, ZnPc. NiPc and CuPc are also presented.Modification of electron transfer process by such films for reversible redox systems is taken as the criterion to establish enhanced electrocatalytic activity.Metal phthalocyanines are p- type semiconductors and the conductivity is enhanced by doping with iodine. The effect of doping on the activation energy of the conduction process is evaluated by measuring the temperature dependent variation of conductivity. Effect of thennal treatment on iodine doped CoPc is investigated by DSC,magnetic susceptibility, IR, ESR and electronic spectra. The elecnucatalytic activity of such doped materials was probed by cyclic voltammetry.The electron transfer mediation characteristics of MPc films depend on the film thickness. The influence of reducing the effective thickness of the MPc film by dispersing it into a conductive polymeric matrix was investigated. Tetrasulphonated cobalt phthalocyanine (CoTSP) was electrostatically immobilised into polyaniline and poly(o-toluidine) under varied conditions.The studies on corrosion inhibition of aluminium by CoTSP and CuTSP and By virtue of their anionic character they are soluble in water and are strongly adsorbed on aluminium. Hence they can act as corrosion inhibitors. CoTSP is also known to catalyze the reduction of dioxygen.This reaction can accelerate the anodic dissolution of metal as a complementary reaction. The influence of these conflicting properties of CoTSP on the corrosion of aluminium was studied and compared with those of CuTSP.In the course of these investigations a number of gadgets like cell for measuring the electrical conductivity of solids under non-isothermal conditions, low power rf oscillator and a rotating disc electrode were fabricated.
Resumo:
D.C. and a.c. electrical conductivities, dielectric constant and dielectric loss factor in single crystals of ethylenediammonium sulphate, (H3NCH2CH2NH3)(SO4), have been measured axiswise as a function of temperature. Anomalous variations in all the above properties at 480 K indicate the occurrence of a phase transition in the above material at this temperature. The existence of such a phase transition is also confirmed by DSC measurements. Electrical conductivity results are analysed and the activation energies of conduction at different temperature regions have been evaluated from the logσ vs 103T−1 plot. Possible mechanisms for the electrical conduction process are discussed, the available results being in favour of a proton transport model.
Resumo:
An exploratory model for cutting is presented which incorporates fracture toughness as well as the commonly considered effects of plasticity and friction. The periodic load fluctuations Been in cutting force dynamometer tests are predicted, and considerations of chatter and surface finish follow. A non-dimensional group is put forward to classify different regimes of material response to machining. It leads to tentative explanations for the difficulties of cutting materials such as ceramics and brittlo polymers, and also relates to the formation of discontinuous chips. Experiments on a range of solids with widely varying toughness/strength ratios generally agree with the analysis.
Resumo:
A continuum model describing sea ice as a layer of granulated thick ice, consisting of many rigid, brittle floes, intersected by long and narrow regions of thinner ice, known as leads, is developed. We consider the evolution of mesoscale leads, formed under extension, whose lengths span many floes, so that the surrounding ice is treated as a granular plastic. The leads are sufficiently small with respect to basin scales of sea ice deformation that they may be modelled using a continuum approach. The model includes evolution equations for the orientational distribution of leads, their thickness and width expressed through second-rank tensors and terms requiring closures. The closing assumptions are constructed for the case of negligibly small lead ice thickness and the canonical deformation types of pure and simple shear, pure divergence and pure convergence. We present a new continuum-scale sea ice rheology that depends upon the isotropic, material rheology of sea ice, the orientational distribution of lead properties and the thick ice thickness. A new model of lead and thick ice interaction is presented that successfully describes a number of effects: (i) because of its brittle nature, thick ice does not thin under extension and (ii) the consideration of the thick sea ice as a granular material determines finite lead opening under pure shear, when granular dilation is unimportant.
Resumo:
The synthesis and crystal structure of four gallium sulphide open frameworks, built from supertetrahedral clusters, are described. The structures of [C4NH12]6[Ga10S18][C4NH12]6[Ga10S18](1) and [C4NH12]12[Ga20S35.5(S3)0.5O](2) contain supertetrahedral T3 clusters, while in the isostructural compounds [C4NH12]16[Ga10S18M4Ga16S33][C4NH12]16[Ga10S18M4Ga16S33] (M=CoM=Co(3), Zn (4)), T3 and T4 clusters alternate. These materials exhibit three-dimensional frameworks, with topologies consisting of two interpenetrating diamond lattices, and contain over 50% of solvent accessible void space. UV–Vis diffuse reflectance measurements indicate that these compounds are semiconducting, with band gaps over the range 3.4–4.1 eV.
Resumo:
Basic structural aspects about the layered hexaniobate of K(4)Nb(6)O(17) composition and its proton-exchanged form were investigated mainly by spectroscopic techniques. Raman spectra of hydrous K(4)Nb(6)O(17) and H(2)K(2)Nb(6)O(17)center dot H(2)O show significant modifications in the 950-800 cm(-1) region (Nb-O stretching mode of highly distorted NbO(6) octahedra). The band at 900 cm(-1) shifts to 940 cm(-1) after the replacement of K(+) ion by proton. Raman spectra of the original materials and the related deuterated samples are similar suggesting that no isotopic effect occurs. Major modifications were observed when H(2)K(2)Nb(6)O(17) was dehydrated: the relative intensity of the band at 940 cm(-1) decreases and new bands seems to be present at about 860-890 cm(-1). The H(+) ions should be shielded by the hydration sphere what preclude the interaction with the layers. Removing the water molecules, H(+) ions can establish a strong interaction with oxygen atoms, decreasing the bond order of Nb-O linkage. X-ray absorption near edge structure studies performed at Nb K-edge indicate that the niobium coordination number and oxidation state remain identical after the replacement of potassium by proton. From the refinement of the fine structure, it appears that the Nb-Nb coordination shell is divided into two main contributions of about 0.33 and 0.39 nm, and interestingly the population, i.e., the number of backscattering atoms is inversed between the two hexaniobate materials. 2009 Elsevier Ltd. All rights reserved.
Resumo:
Single-phase perovskite structure Pb(1-x)Ba(x)TiO(3) thin films (x = 0.30, 0.50 and 0.70) were deposited on Pt/Ti/SiO(2)/Si substrates by the spin-coating technique. The dielectric study reveals that the thin films undergo a diffuse type ferroelectric phase transition, which shows a broad peak. An increase of the diffusivity degree with the increasing Barium contents was observed, and it was associated to a grain decrease in the studied composition range. The temperature dependence of the phonon frequencies was used to characterize the phase transition temperatures. Raman modes persist above tetragonal to cubic phase transition temperature, although all optical modes should be Raman inactive. The origin of these modes was interpreted in terms of breakdown of the local cubic symmetry by chemical disorder. The absence of a well-defined transition temperature and the presence of broad bands in some interval temperature above FE-PE phase transition temperature Suggested a diffuse type phase transition. This result corroborates the dielectric constant versus temperature data, which showed a broad ferroelectric phase transition in these thin films. The leakage Current density of the PBT thin films was studied at different temperatures and the data follow the Schottky emission model. Through this analysis the Schottky barrier height values 0.75, 0.53 and 0.34 eV were obtained to the PBT70, PBT50 and PBT30 thin films, respectively. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
In the process laboratory of Metso minerals (Sala) AB, continuous tests have been made with a laboratory unit High-Rate thickener. The tests are made in order to compare three methods of thickening techniques of suspended solids. The three techniques are High-Rate thickening, conventional thickening and lamella thickening. The High-Rate and the conventional trials are based on a continuous method, while the lamella thickener is based on batch trials. Because the lamella thickener is based on batch trials and there were some optimization problems with the adding point of the flocculant at the continuous trials, it was not feasible to compare the lamella thickener with the other two thickener types. On the other hand, since the optimization problems were the same for the other two methods there was no problem comparing them. The result of the comparison between the High-Rate thickener and the conventional thickener, was, that the High-Rate thickener manages to work at a higher rise rate with a lower consumption of flocculant than the conventional thickener. Seeing to the unit area that is needed by each thickener it is apparent that the conventional thickener demands a higher unit area than the High-Rate thickener to achieve the same amount of solids in the underflow. It has also been showed that the High-Rate thickener demands a lesser quantity of flocculant at the same amount of suspended solids in the feed than the conventional thickener.
Resumo:
Titanium nitride films were grown on glass using the Cathodic Cage Plasma Deposition technique in order to verify the influence of process parameters in optical and structural properties of the films. The plasma atmosphere used was a mixture of Ar, N2 and H2, setting the Ar and N2 gas flows at 4 and 3 sccm, respectively and H2 gas flow varied from 0, 1 to 2 sccm. The deposition process was monitored by Optical Emission Spectroscopy (OES) to investigate the influence of the active species in plasma. It was observed that increasing the H2 gas flow into the plasma the luminescent intensities associated to the species changed. In this case, the luminescence of N2 (391,4nm) species was not proportional to the increasing of the H2 gas into the reactor. Other parameters investigated were diameter and number of holes in the cage. The analysis by Grazing Incidence X-Ray Diffraction (GIXRD) confirmed that the obtained films are composed by TiN and they may have variations in the nitrogen amount into the crystal and in the crystallite size. The optical microscopy images provided information about the homogeneity of the films. The atomic force microscopy (AFM) results revealed some microstructural characteristics and surface roughness. The thickness was measured by ellipsometry. The optical properties such as transmittance and reflectance (they were measured by spectrophotometry) are very sensitive to changes in the crystal lattice of the material, chemical composition and film thicknesses. Therefore, such properties are appropriate tools for verification of this process control. In general, films obtained at 0 sccm of H2 gas flow present a higher transmittance. It can be attributed to the smaller crystalline size due to a higher amount of nitrogen in the TiN lattice. The films obtained at 1 and 2 sccm of H2 gas flow have a golden appearance and XRD pattern showed peaks characteristics of TiN with higher intensity and smaller FWHM (Full Width at Half Maximum) parameter. It suggests that the hydrogen presence in the plasma makes the films more stoichiometric and becomes it more crystalline. It was observed that with higher number of holes in the lid of the cage, close to the region between the lid and the sample and the smaller diameter of the hole, the deposited film is thicker, which is justified by the most probability of plasma species reach effectively the sample and it promotes the growth of the film