947 resultados para Loop Airlift Reactors
Resumo:
The influence of bovine rumen fluid inoculum during anaerobic treatment of the organic fraction of municipal solid waste (MSW) was studied in this work. The parameters adopted for evaluation were the biostabilization constant of total volatile solids (TVs) and the biostabilization time of the chemical oxygen demand (COD) applied to the reactors. The work was realized in four anaerobic batch reactors of 20 1 capacity each, during a period of 365 days. The proportions between MSW/inoculum loaded in the reactors were Reactor A (100%/0%), Reactor B (95%/5%), Reactor C (90%/10%) and Reactor D (85%/15%). The necessary time for biostabilization of half of the applied COD was 459, 347, 302 and 234 days and the average of methane concentration in the biogas produced was 3.6%, 13.0%, 25.0% and 42.6% for Reactors A, B, C and D, respectively. The data obtained affirm that the inoculum used substantially improved the performance of the process. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
The degradation of polychlorinated biphenyls (PCBs) was investigated under fermentativemethanogenic conditions for up to 60 days in the presence of anaerobic biomass from a full-scale UASB reactor. The low methane yields in the PCBs-spiked batch reactors suggested that the biomass had an inhibitory effect on the methanogenic community. Reactors containing PCBs and co-substrates (ethanol/ sodium formate) exhibited substantial PCB reductions from 0.7 to 0.2 mg mL-1 . For the Bacteria domain, the PCBs-spiked reactors were grouped with the PCB-free reactors with a similarity of 55 %, which suggested the selection of a specific population in the presence of PCBs. Three genera of bacteria were found exclusively in the PCB-spiked reactors and were identified using pyrosequencing analysis, Sedimentibacter, Tissierela and Fusibacter. Interestingly, the Sedimentibacter, which was previously correlated with the reductive dechlorination of PCBs, had the highest relative abundance in the RCS-PCB (7.4 %) and RCS-PCB-PF (12.4 %) reactors. Thus, the anaerobic sludge from the UASB reactor contains bacteria from the Firmicutes phylum that are capable of degrading PCBs.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Accidents or diseases can affect the peripheral part of the nervous system, which raises clinical and surgical therapies, among others. In this context, the technique of end-to-side neurorrhaphy is a treatment option, yet its modification loop needs some additional efficacy studies. The purpose of this study was to compare, among rats, stereological results (axons volume density) after end-to-side neurorrhaphy and after end-to-side loop neurorrhaphy. Thirty Wistar rats were used, divided into six groups (five animals per group), consisting of two control groups (for the fibular and tibial nerves), two study groups for the fibular nerve (one with an end-to-side neurorrhaphy, and the other with an end-to-side loop neurorrhaphy) and two study groups for the tibial nerve (with an endto- side neurorrhaphy and the other one with an end-to-side loop neurorrhaphy). After 180 days, all groups were sacrificed for axonal stereological analysis (volume density) in distal nerve stumps. There was significant maintenance of neuronal-axonal density in the distal stumps to neurorrhaphy (p< 0.005) compared with the normal stumps. The end-to-side loop neurorrhaphy is a therapeutic option as suture technique after complete nerve section, in order to restore most of the axonal functional integrity.
Resumo:
It is shown that the two-loop Kac-Moody algebra is equivalent to a two-variable-loop algebra and a decoupled β-γ system. Similarly WZNW and CSW models having as algebraic structure the Kac-Moody algebra are equivalent to an infinity of versions of the corresponding ordinary models and decoupled abelian fields.
Resumo:
We construct a centerless W-infinity type of algebra in terms of a generator of a centerless Virasoro algebra and an abelian spin 1 current. This algebra conventionally emerges in the study of pseudo-differential operators on a circle or alternatively within KP hierarchy with Watanabe's bracket. Construction used here is based on a spherical deformation of the algebra W ∞ of area preserving diffeomorphisms of a 2-manifold. We show that this deformation technique applies to the two-loop WZNW and conformal affine Toda models, establishing henceforth W ∞ invariance of these models.
Resumo:
We investigate the effects induced by excited leptons at the one-loop level in the observables measured on the Ζ peak at LEP. Using a general effective Lagrangian approach to describe the couplings of the excited leptons, we compute their contributions to both oblique parameters and Ζ partial widths. Our results show that the new effects are comparable to the present experimental sensitivity, but they do not lead to a significant improvement on the available constraints on the couplings and masses of these states.
Resumo:
The present work evaluated the performance of two treatment systems in reducing indicators of biological contamination in swine production wastewater. System I consisted of two upflow anaerobic sludge blanket (UASB) reactors, with 510 and 209 L in volume, being serially arranged. System II consisted of a UASB reactor, anaerobic filter, trickling filter, and decanter, being also organized in series, with volumes of 300, 190, 250, and 150 L, respectively. Hydraulic retention times (HRT) applied in the first UASB reactors were 40, 30, 20, and 11 h in systems I and II. The average removal efficiencies of total and thermotolerant coliforms in system I were 92.92% to 99.50% and 94.29% to 99.56%, respectively, and increased in system II to 99.45% to 99.91% and 99.52% to 99.93%, respectively. Average removal rates of helminth eggs in system I were 96.44% to 99.11%, reaching 100% as in system II. In reactor sludge, the counts of total and thermotolerant coliforms ranged between 10(5) and 10(9) MPN (100 mL)(-1), while helminth eggs ranged from 0.86 to 9.27 eggs g(-1) TS.
Resumo:
Prokineticin receptors (PROKR) are G protein-coupled receptors (GPCR) that regulate diverse biological processes, including olfactory bulb neurogenesis and GnRH neuronal migration. Mutations in PROKR2 have been described in patients with varying degrees of GnRH deficiency and are located in diverse functional domains of the receptor. Our goal was to determine whether variants in the first intracellular loop (ICL1) of PROKR2 (R80C, R85C, and R85H) identified in patients with hypogonadotropic hypogonadism interfere with receptor function and to elucidate the mechanisms of these effects. Because of structural homology among GPCR, clarification of the role of ICL1 in PROKR2 activity may contribute to a better understanding of this domain across other GPCR. The effects of the ICL1 PROKR2 mutations on activation of signal transduction pathways, ligand binding, and receptor expression were evaluated. Our results indicated that the R85C and R85H PROKR2 mutations interfere only modestly with receptor function, whereas the R80C PROKR2 mutation leads to a marked reduction in receptor activity. Cotransfection of wild-type (WT) and R80C PROKR2 showed that the R80C mutant could exert a dominant negative effect on WT PROKR2 in vitro by interfering with WT receptor expression. In summary, we have shown the importance of Arg80 in ICL1 for PROKR2 expression and demonstrate that R80C PROKR2 exerts a dominant negative effect on WT PROKR2. (Molecular Endocrinology 26: 1417-1427, 2012)
Resumo:
In this work, a method of computing PD stabilising gains for rotating systems is presented based on the D-decomposition technique, which requires the sole knowledge of frequency response functions. By applying this method to a rotating system with electromagnetic actuators, it is demonstrated that the stability boundary locus in the plane of feedback gains can be easily plotted, and the most suitable gains can be found to minimise the resonant peak of the system. Experimental results for a Laval rotor show the feasibility of not only controlling lateral shaft vibration and assuring stability, but also helps in predicting the final vibration level achieved by the closed-loop system. These results are obtained based solely on the input-output response information of the system as a whole.
Manipulation effects of prior exercise intensity feedback by the Borg scale during open-loop cycling
Resumo:
Objective To verify the effects of exercise intensity deception by the Borg scale on the ratings of perceived exertion (RPE), heart rate (HR) and performance responses during a constant power output open-loop exercise. Methods Eight healthy men underwent a maximal incremental test on a cycle ergometer to identify the peak power output (PPO) and heart rate deflection point (HRDP). Subsequently, they performed a constant power output trial to exhaustion set at the HRDP intensity, in deception (DEC) and informed (INF) conditions: DEC-subjects were told that they would be cycling at an intensity corresponding to two categories below the RPE quantified at the HRDP; INF-subjects were told that they would cycle at the exact intensity corresponding to the RPE quantified at the HRDP. Results The PPO and power output at the HRDP obtained in maximal incremental tests were 247.5 +/- 32.1 W and 208.1 +/- 27.1 W, respectively. No significant difference in the time to exhaustion was found between DEC (525 +/- 244 s) or INF (499 +/- 224 s) trials. The slope and the first and second measurements of the RPE and HR parameters showed no significant difference between trials. Conclusions Psychophysiological variables such as RPE and HR as well as performance were not affected when exercise intensity was deceptively manipulated via RPE scores. This may suggest that unaltered RPE during exercise is a regulator of performance in this open-loop exercise.