989 resultados para Load tests
Resumo:
Speech understanding disorders in the elderly may be due to peripheral or central auditory dysfunctions. Asymmetry of results in dichotic testing increases with age, and may reflect on a lack of inter-hemisphere transmission and cognitive decline. Aim: To investigate auditory processing of aged people with no hearing complaints. Study design: clinical prospective. Materials and Methods: Twenty-two voluntary individuals, aged between 55 and 75 years, were evaluated. They reported no hearing complaints and had maximal auditory thresholds of 40 dB HL until 4 KHz, 80% of minimal speech recognition scores and peripheral symmetry between the ears. We used two kinds of tests: speech in noise and dichotic alternated dissyllables (SSW). Results were compared between males and females, right and left ears and between age groups. Results: There were no significant differences between genders, in both tests. Their Left ears showed worse results, in the competitive condition of SSW. Individuals aged 65 or older had poorer performances than those aged 55 to 64. Conclusion: Central auditory tests showed worse performance with aging. The employment of a dichotic test in the auditory evaluation setting in the elderly may help in the early identification of degenerative processes, which are common among these patients.
Resumo:
The literature shows contradictory results regarding the role of composite shrinkage and elastic modulus as determinants of polymerization stress. The present study aimed at a better understanding of the test mechanics that could explain such divergences among studies. The hypothesis was that the effects of composite shrinkage and elastic modulus on stress depend upon the compliance of the testing system. A commonly used test apparatus was simulated by finite element analysis, with different compliance levels defined by the bonding substrate (steel, glass, composite, or acrylic). Composites with moduli between 1 and 12 GPa and shrinkage values between 0.5% and 6% were modeled. Shrinkage was simulated by thermal analogy. The hypothesis was confirmed. When shrinkage and modulus increased simultaneously, stress increased regardless of the substrate. However, if shrinkage and modulus were inversely related, their magnitudes and interaction with rod material determined the stress response.
Resumo:
Purpose The aim of this study was to evaluate the ability of bond strength tests to accurately measure the bond strength of fiber posts luted into root canals Materials and Methods The test methods studied were hourglass microtensile (HM), push-out (PS), modified push out (MP) and pull out (PL) The evaluated parameters were bond strength values, reliability (using Weibull analysis), failure mode (using confocal microscopy), and stress distribution (using finite element analysis) Forty human intact single rooted and endodontically treated teeth were divided into four groups Each group was assigned one of the test methods The samples in the HM and PS groups were 1 0 +/- 0 1 mm thick, the HM samples were hourglass shaped and the PS samples were disk shaped For the PL and MP groups, each 1 mm dentin slice was luted with a fiber post piece Three dimensional models of each group were made and stress was analyzed based on Von Mises criteria Results PL provided the highest values of bond strength followed by MP both of which also had greater amounts of adhesive failures PS showed the highest frequency of cohesive failures MP showed a more homogeneous stress distribution and a higher Weibull modulus Conclusion The specimen design directly influences the biomechanical behavior of bond strength tests
Resumo:
Objective. To evaluate the biaxial and short-beam uniaxial strength tests applied to resin composites based upon their Weibull parameters, fractographic features and stress distribution. Methods. Disk- (15 mm x 1 mm) and beam-shaped specimens (10 mm x 2 mm x 1 mm) of three commercial composites (Concept/Vigodent, CA; Heliomolar/Ivoclar-Vivadent, HE; Z250/3M ESPE, FZ) were prepared. After 48h dry storage at 37 degrees C, disks and beams were submitted to piston-on-three-balls (BI) and three-point bending (UNI) tests, respectively. Data were analyzed by Weibull statistics. Fractured surfaces were observed under stereomicroscope and scanning electron microscope. Maximum principal stress (sigma(1)) distribution was determined by finite element analysis (FEA). Maximum sigma(1-BI) and sigma(1-UNI) were compared to FZ strengths calculated by applying the average failure loads to the analytical equations (sigma(a-BI) and sigma(a-UNI)). Results. For BI, characteristic strengths were: 169.9a (FZ), 122.4b (CA) and 104.8c (HE), and for UNI were: 160.3a (FZ), 98.2b (CA) and 91.6b (HE). Weibull moduli ( m) were similar within the same test. CA and HE presented statistically higher m for BI. Surface pores ( BI) and edge flaws ( UNI) were the most frequent fracture origins. sigma(1-BI) was 14% lower than sigma(a-BI.) sigma(1-UNI) was 43% higher than sigma(a-UNI). Significance. Compared to the short-beam uniaxial test, the biaxial test detected more differences among composites and displayed less data scattering for two of the tested materials. Also, biaxial strength was closer to the material`s strength estimated by FEA. (C) 2009 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Resumo:
This study evaluated the influence of adhesive layer thickness (ADL) on the resin-dentin bond strength of two adhesive systems (AS) after ther-mal and mechanical loading (TML). A flat superficial dentin surface was exposed with 600-grit SiC paper on 40 molars. After primer application, the adhesive layer of Scotchbond Multipurpose (SBMP) or Clearfil SE Bond (CSEB) was applied in one or two layers to a delimited area (52 mm(2)) and resin blocks (Filtek 2250) were built incrementally: Half of the sample was stored in distilled water (37 C, 24 hours) and submitted to thermal (1,000; 5 degrees-55 degrees C) and mechanical cycles (500,000; 10kgf) [TML]. The other half was stored in distilled water (72 hours). The teeth were then sectioned to obtain sticks (0.8 mm(2)) to be tested under tensile mode (1.0 mm/minute). The fracture mode was analyzed at 400x. The BS from all sticks from the same tooth was averaged for statistical purposes. The data was analyzed by three-way ANOVA. The x(2) test was used (p<0.05) to compare the frequency of pre-testing failure specimens. Higher BS values were observed for SBMP regardless of the ADL. The TML reduced the BS values irrespective of the adhesive employed and the ADL. A higher frequency of pre-testing failure specimens was observed for the cycled groups. A thicker adhesive layer, acting as an intermediate flexible layer, did not min-imize the damage caused by thermal/mechanical load cycling for a three-step etch-and-rinse and two-step self-etch system.
Resumo:
Stress distributions in torsion and wire-loop shear tests were compared using three-dimensional (3-D) linear-elastic finite element method, in an attempt to predict the ideal conditions for testing adhesive strength of dental resin composites to dentin. The torsion test presented lower variability in stress concentration at the adhesive interface with changes in the proportion adhesive thickness/resin composite diameter, as well as lower variability with changes in the resin composite elastic modulus. Moreover, the torsion test eliminated variability from changes in loading distance, and reduced the cohesive fracture tendency in the dentin. The torsion test seems to be more appropriate than wire-loop shear test for testing the resin composite-tooth interface strength. (c) Koninklijke Brill NV, Leiden, 2009
Resumo:
Background: Understanding how clinical variables affect stress distribution facilitates optimal prosthesis design and fabrication and may lead to a decrease in mechanical failures as well as improve implant longevity. Purpose: In this study, the many clinical variations present in implant-supported prosthesis were analyzed by 3-D finite element method. Materials and Method: A geometrical model representing the anterior segment of a human mandible treated with 5 implants supporting a framework was created to perform the tests. The variables introduced in the computer model were cantilever length, elastic modulus of cancellous bone, abutment length, implant length, and framework alloy (AgPd or CoCr). The computer was programmed with physical properties of the materials as derived from the literature, and a 100N vertical load was used to simulate the occlusal force. Images with the fringes of stress were obtained and the maximum stress at each site was plotted in graphs for comparison. Results: Stresses clustered at the elements closest to the loading point. Stress increase was found to be proportional to the increase in cantilever length and inversely proportional to the increase in the elastic modulus of cancellous bone. Increasing the abutment length resulted in a decrease of stress on implants and framework. Stress decrease could not be demonstrated with implants longer than 13 mm. A stiffer framework may allow better stress distribution. Conclusion: The relative physical properties of the many materials involved in an implant-supported prosthesis system affect the way stresses are distributed.
Resumo:
In cantilevered implant-supported complete prosthesis, the abutments` different heights represent different lever arms to which the abutments are subjected resulting in deformation of the components, which in turn transmit the load to the adjacent bone. The purpose of this in vitro study was to quantitatively assess the deformation of abutments of different heights in mandibular cantilevered implant-supported complete prosthesis. A circular steel master cast with five perforations containing implant replicas (O3.75 mm) was used. Two groups were formed according to the types of alloy of the framework (CoCr or PdAg). Three frameworks were made for each group to be tested with 4, 5.5 and 7 mm abutments. A 100 N load was applied at a point 15 mm distal to the center of the terminal implant. Readings of the deformations generated on the mesial and distal aspects of the abutments were obtained with the use of strain gauges. Deformation caused by tension and compression was observed in all specimens with the terminal abutment taking most of the load. An increase in deformation was observed in the terminal abutment as the height was increased. The use of an alloy of higher elastic modulus (CoCr) also caused the abutment deformation to increase. Abutment`s height and framework alloy influence the deformation of abutments of mandibular cantilevered implant-supported prosthesis. To cite this article:Suedam V, Capello SouzaEA, Moura MS, Jacques LB, Rubo JH. Effect of abutment`s height and framework alloy on the load distribution of mandibular cantilevered implant-supported prosthesis. Clin. Oral Impl. Res. 20, 2009; 196-200.doi: 10.1111/j.1600-0501.2008.01609.x.
Resumo:
An important feature of some conceptual modelling grammars is the features they provide to allow database designers to show real-world things may or may not possess a particular attribute or relationship. In the entity-relationship model, for example, the fact that a thing may not possess an attribute can be represented by using a special symbol to indicate that the attribute is optional. Similarly, the fact that a thing may or may not be involved in a relationship can be represented by showing the minimum cardinality of the relationship as zero. Whether these practices should be followed, however, is a contentious issue. An alternative approach is to eliminate optional attributes and relationships from conceptual schema diagrams by using subtypes that have only mandatory attributes and relationships. In this paper, we first present a theory that led us to predict that optional attributes and relationships should be used in conceptual schema diagrams only when users of the diagrams require a surface-level understanding of the domain being represented by the diagrams. When users require a deep-level understanding, however, optional attributes and relationships should not be used because they undermine users' abilities to grasp important domain semantics. We describe three experiments which we then undertook to test our predictions. The results of the experiments support our predictions.
Resumo:
Objectives: This study compared the reliability and fracture patterns of zirconia cores veneered with pressable porcelain submitted to either axial or off-axis sliding contact fatigue. Methods: Forty-two Y-TZP plates (12 mm x 12 mm x 0.5 mm) veneered with pressable porcelain (12 mm x 12 mm x 1.2 mm) and adhesively luted to water aged composite resin blocks (12 mm x 12 mm x 4 mm) were stored in water at least 7 days prior to testing. Profiles for step-stress fatigue (ratio 3:2:1) were determined from single load to fracture tests (n = 3). Fatigue loading was delivered on specimen either on axial (n = 18) or off-axis 30 degrees angulation (n = 18) to simulate posterior tooth cusp inclination creating a 0.7 mm slide. Single load and fatigue tests utilized a 6.25 mm diameter WC indenter. Specimens were inspected by means of polarized-light microscope and SEM. Use level probability Weibull curves were plotted with 2-sided 90% confidence bounds (CB) and reliability for missions of 50,000 cycles at 200 N (90% CB) were calculated. Results: The calculated Weibull Beta was 3.34 and 2.47 for axial and off-axis groups, respectively, indicating that fatigue accelerated failure in both loading modes. The reliability data for a mission of 50,000 cycles at 200 N load with 90% CB indicates no difference between loading groups. Deep penetrating cone cracks reaching the core-veneer interface were observed in both groups. Partial cones due to the sliding component were observed along with the cone cracking for the off-axis group. No Y-TZP core fractures were observed. Conclusions: Reliability was not significantly different between axial and off-axis mouth-motion fatigued pressed over Y-TZP cores, but incorporation of sliding resulted in more aggressive damage on the veneer. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Purpose: The double system of support, in which the distal-extension removable partial denture adapts, causes inadequate stress around abutment teeth, increasing the possibility of unequal bone resorption. Several ways to reduce or more adequately distribute the stress between abutment teeth and residual ridges have been reported; however, there are no definitive answers to the problem. The purpose of this study was to analyze, by means of photoelasticity, the most favorable stress distribution using three retainers: T bar, rest, proximal plate, I bar (RPI), and circumferential with mesialized rest. Materials and Methods: Three photoelastic models were made simulating a Kennedy Class II inferior arch. Fifteen dentures with long saddles, five of each design, were adjusted to the photoelastic patterns and submitted first to uniformly distributed load, and then to a load localized on the last artificial tooth. The saddles were then shortened and the tests repeated. The quantitative and qualitative analyses of stress intensity were done manually and by photography, respectively. For intragroup analyses the Wilcoxon test for paired samples was used, while for intergroup analyses Friedman and Wilcoxon tests were used to better identify the differences (p < 0.05). Results: The RPI retainer, followed by the T bar, demonstrated the best distribution of load between teeth and residual ridge. The circumferential retainer caused greater concentration of stress between dental apexes. Stress distribution was influenced by the type of retainer, the length of the saddle, and the manner of load application. Conclusions: The long saddles and the uniformly distributed loads demonstrated better distribution of stress on support structures.
Resumo:
This paper proposed a novel model for short term load forecast in the competitive electricity market. The prior electricity demand data are treated as time series. The forecast model is based on wavelet multi-resolution decomposition by autocorrelation shell representation and neural networks (multilayer perceptrons, or MLPs) modeling of wavelet coefficients. To minimize the influence of noisy low level coefficients, we applied the practical Bayesian method Automatic Relevance Determination (ARD) model to choose the size of MLPs, which are then trained to provide forecasts. The individual wavelet domain forecasts are recombined to form the accurate overall forecast. The proposed method is tested using Queensland electricity demand data from the Australian National Electricity Market. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
Objective. The diagnostic value of tests for antimyeloperoxidase antibodies (anti-MPO) for systemic vasculitis is less established than that for cytoplasmic antineutrophil cytoplasmic antibody (cANCA)/antiproteinase 3 antibodies (anti-PR3). Controversy exists regarding the optimal utilization of indirect immunofluorescence (IIF) ANCA testing versus antigen-specific ANCA testing. To summarize the pertinent data, we conducted a metaanalysis examining the diagnostic value of ANCA testing systems that include assays for anti-MPO. Methods. We performed a structured Medline search and reference list review. Target articles in the search strategy were those reporting the diagnostic value of immunoassays for anti-MPO for the spectrum of systemic necrotizing vasculitides that includes Wegener's granulomatosis, microscopic polyangiitis, the Churg-Strauss syndrome, and isolated pauci-immune necrotizing or crescentic glomerulonephritis, regardless of other types of ANCA tests. Inclusion criteria required specification of a consecutive or random patient selection method and the use of acceptable criteria for the diagnosis of vasculitis exclusive of ANCA test results. Weighted pooled summary estimates of sensitivity and specificity were calculated for anti-MPO alone, anti-MPO + perinuclear ANCA (pANCA), and anti-MPO/pANCA + anti-PR3/cANCA. Results. Of 457 articles reviewed, only 7 met the selection criteria. Summary estimates of sensitivity and specificity (against disease controls only) of assays for anti-MPO for the diagnosis of systemic necrotizing vasculitides were 37.1% (confidence interval 26.6% to 47.6%) and 96.3% (CI 94.1% to 98.5%), respectively. When the pANCA pattern by IIF was combined with anti-MPO testing, the specificity improved to 99.4%, with a lower sensitivity, 31.5%. The combined ANCA testing system (anti-PR3/cANCA + anti-MPO/pANCA) increased the sensitivity to 85.5% with a specificity of 98.6%. Conclusion. These results suggest that while anti-MPO is relatively specific for the diagnosis of systemic vasculitis, the combination system of immunoassays for anti-MPO and IIF for pANCA is highly specific and both tests should be used together given the high diagnostic precision required for these conditions. Because patients with ANCA associated vasculitis have either anti-MPO with pANCA or anti-PR3 with cANCA, and rarely both, a combined ANCA testing system including anti-PR3/cANCA and anti-MPO/pANCA is recommended to optimize the diagnostic performance of ANCA testing. (J Rheumatol 2001;28:1584-90)