938 resultados para Linear Attention,Conditional Language Model,Natural Language Generation,FLAX,Rare diseases
Resumo:
Several cystic fibrosis (CF) mouse models demonstrate an increased susceptibility to Pseudomonas aeruginosa lung infection, characterized by excessive inflammation and high rates of mortality. Here we developed a model of chronic P. aeruginosa lung disease in mice homozygous for the murine CF transmembrane conductance regulator G551D mutation that provides an excellent model for CF lung disease. After 3 days of infection with mucoid P. aeruginosa entrapped in agar beads, the G551D animals lost substantially more body weight than non-CF control animals and were less able to control the infection, harboring over 40-fold more bacteria in the lung. The airways of infected G551D animals contained altered concentrations of the inflammatory mediators tumor necrosis factor-alpha, KC/N51, and macrophage inflammatory protein-2 during the first 2 days of infection, suggesting that an ineffective inflammatory response is partly responsible for the clearance defect.
Resumo:
Introduction: Although the pig is a standard model for the evaluation of various diseases in humans, including coagulopathy, it is not clear whether results in animals can be extrapolated to man.Materials and methods: In 75 anesthetized pigs, we assessed reagent-supported thrombelastometry (ExTEM (R)), platelet-blocked thrombelastometry (FibTEM (R)), and aprotinin thrombelastometry (ApTEM (R)). Results were compared to values from 13 anesthetized humans.Results (median, 95% CI): ExTEM (R) : While clot strength was comparable in pigs (66 mm, 65-67 mm) and in humans (64 mm, 60-68 mm; NS), clotting time in animals was longer (pigs 64 s, 62-66 s; humans 55 s, 49-71 s; P<0.05) and clot formation time shorter (pigs 52 s, 49-54 s; humans 83 s, 67-98 s, P<0.001). The clot lysis index at 30 minutes was lower in animals (96.9%, 95.1-97.3%) than in humans (99.5%, 98.6-99.9%; P<0.001). ApTEM (R) showed no hyperfibrinolysis in animals. Modification of the anesthesia protocol in animals resulted in significant ExTEM (R) changes. FibTEM (R) : Complete platelet inhibition yielded significantly higher platelet contribution to clot strength in pigs (79%, 76-81%) than in humans (73%, 71-77%; P<0.05), whereas fibrinogen contribution to clot strength was higher in humans (27%, 24-29%) than in animals (21%, 19-24%; P<0.05).Conclusions: Maximum clot firmness is comparable in human and porcine blood. However, clot lysis, platelet and fibrinogen contribution to clot strength, as well as initiation and propagation of clotting, are considerably different between pigs and humans. In addition, anesthesic drugs seem to influence thrombelastometry in animals. Accordingly, coagulation abnormalities in pigs subjected to diseases may not necessarily represent the coagulation profile in sick patients. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
We aimed to compare physical activity level and cardiorespiratory fitness in children with different chronic diseases, such as type 1 diabetes mellitus (T1DM), obesity (OB) and juvenile idiopathic arthritis (JIA), with healthy controls (HC). We performed a cross-sectional study including 209 children: OB: n = 45, T1DM: n = 48, JIA: n = 31, and HC: n = 85. Physical activity level was assessed by accelerometer and cardiorespiratory fitness by a treadmill test. ANOVA, linear regressions and Pearson correlations were used. Children with chronic diseases had reduced total daily physical activity counts (T1DM 497 +/- 54 cpm, p = 0.003; JIA 518 +/- 28, p < 0.001, OB 590 +/- 25, p = 0.003) and cardiorespiratory fitness (JIA 39.3 +/- 1.7, p = 0.001, OB 41.7 +/- 1.2, p = 0.020) compared to HC (668 +/- 35 cpm; 45.3 +/- 0.9 ml kg(-1) min(-1), respectively). Only 60.4% of HC, 51.6% of OB, 38.1% of JIA and 38.5% of T1DM children met the recommended daily 60 min of moderate-to-vigorous physical activity. Low cardiorespiratory fitness was associated with female gender and low daily PA. Children with chronic diseases had reduced physical activity and cardiorespiratory fitness. As the benefits of PA on health have been well demonstrated during growth, it should be encouraged in those children to prevent a reduction of cardiorespiratory fitness and the development of comorbidities.
Resumo:
BACKGROUND: Methylmalonic aciduria is an inborn error of metabolism characterized by accumulation of methylmalonate (MMA), propionate and 2-methylcitrate (2-MCA) in body fluids. Early diagnosis and current treatment strategies aimed at limiting the production of these metabolites are only partially effective in preventing neurological damage. METHODS: To explore the metabolic consequences of methylmalonic aciduria on the brain, we used 3D organotypic brain cell cultures from rat embryos. We challenged the cultures at two different developmental stages with 1 mM MMA, propionate or 2-MCA applied 6 times every 12 h. In a dose-response experiment cultures were challenged with 0.01, 0.1, 0.33 and 1 mM 2-MCA. Immunohistochemical staining for different brain cell markers were used to assess cell viability, morphology and differentiation. Significant changes were validated by western blot analysis. Biochemical markers were analyzed in culture media. Apoptosis was studied by immunofluorescence staining and western blots for activated caspase-3. RESULTS: Among the three metabolites tested, 2-MCA consistently produced the most pronounced effects. Exposure to 2-MCA caused morphological changes in neuronal and glial cells already at 0.01 mM. At the biochemical level the most striking result was a significant ammonium increase in culture media with a concomitant glutamine decrease. Dose-response studies showed significant and parallel changes of ammonium and glutamine starting from 0.1 mM 2-MCA. An increased apoptosis rate was observed by activation of caspase-3 after exposure to at least 0.1 mM 2-MCA. CONCLUSION: Surprisingly, 2-MCA, and not MMA, seems to be the most toxic metabolite in our in vitro model leading to delayed axonal growth, apoptosis of glial cells and to unexpected ammonium increase. Morphological changes were already observed at 2-MCA concentrations as low as 0.01 mM. Increased apoptosis and ammonium accumulation started at 0.1 mM thus suggesting that ammonium accumulation is secondary to cell suffering and/or cell death. Local accumulation of ammonium in CNS, that may remain undetected in plasma and urine, may therefore play a key role in the neuropathogenesis of methylmalonic aciduria both during acute decompensations and in chronic phases. If confirmed in vivo, this finding might shift the current paradigm and result in novel therapeutic strategies.
Resumo:
Background: Understanding the true prevalence of lymphangioleiomyomatosis (LAM) is important in estimating disease burden and targeting specific interventions. As with all rare diseases, obtaining reliable epidemiological data is difficult and requires innovative approaches.Aim: To determine the prevalence and incidence of LAM using data from patient organizations in seven countries, and to use the extent to which the prevalence of LAM varies regionally and nationally to determine whether prevalence estimates are related to health-care provision.Methods: Numbers of women with LAM were obtained from patient groups and national databases from seven countries (n = 1001). Prevalence was calculated for regions within countries using female population figures from census data. Incidence estimates were calculated for the USA, UK and Switzerland. Regional variation in prevalence and changes in incidence over time were analysed using Poisson regression and linear regression.Results: Prevalence of LAM in the seven countries ranged from 3.4 to 7.8/million women with significant variation, both between countries and between states in the USA. This variation did not relate to the number of pulmonary specialists in the region nor the percentage of population with health insurance, but suggests a large number of patients remain undiagnosed. The incidence of LAM from 2004 to 2008 ranged from 0.23 to 0.31/million women/per year in the USA, UK and Switzerland.Conclusions: Using this method, we have found that the prevalence of LAM is higher than that previously recorded and that many patients with LAM are undiagnosed.
Resumo:
The development of the economic evaluation of health care interventions has become a support tool in making decisions on pricing and reimbursement of new health interventions. The increasingly extensive application of these techniques has led to the identification of particular situations in which, for various reasons, it may be reasonable to take into account special considerations when applying the general principles of economic evaluation. In this article, which closes a series of three, we will discuss, using the Metaplan technique, about the economic evaluation of health interventions in special situations such as rare diseases and end of life treatments, as well as consideration of externalities in assessments, finally pointing out some research areas to solve the main problems identified in these fields.
Resumo:
Postmortem imaging is increasingly used in forensic practice in cases of natural deaths related to cardiovascular diseases, which represent the most common causes of death in developed countries. While radiological examination is generally considered to be a good complement for conventional autopsy, it was thought to have limited application in cardiovascular pathology. At present, multidetector computed tomography (MDCT), CT angiography, and cardiac magnetic resonance imaging (MRI) are used in postmortem radiological investigation of cardiovascular pathologies. This review presents the actual state of postmortem imaging for cardiovascular pathologies in cases of sudden cardiac death (SCD), taking into consideration both the advantages and limitations. The radiological evaluation of ischemic heart disease (IHD), the most frequent cause of SCD in the general population of industrialized countries, includes the examination of the coronary arteries and myocardium. Postmortem CT angiography (PMCTA) is very useful for the detection of stenoses and occlusions of coronary arteries but less so for the identification of ischemic myocardium. MRI is the method of choice for the radiological investigation of the myocardium in clinical practice, but its accessibility and application are still limited in postmortem practice. There are very few reports implicating postmortem radiology in the investigation of other causes of SCD, such as cardiomyopathies, coronary artery abnormalities, and valvular pathologies. Cardiomyopathies representing the most frequent cause of SCD in young athletes cannot be diagnosed by echocardiography, the most widely available technique in clinical practice for the functional evaluation of the heart and the detection of cardiomyopathies. PMCTA and MRI have the potential to detect advanced stages of diseases when morphological substrate is present, but these methods have yet to be sufficiently validated for postmortem cases. Genetically determined channelopathies cannot be detected radiologically. This review underlines the need to establish the role of postmortem radiology in the diagnosis of SCD.
Resumo:
Embryonic stem cells (ESCs) offer attractive prospective as potential source of neurons for cell replacement therapy in human neurodegenerative diseases. Besides, ESCs neural differentiation enables in vitro tissue engineering for fundamental research and drug discovery aimed at the nervous system. We have established stable and long-term three-dimensional (3D) culture conditions which can be used to model long latency and complex neurodegenerative diseases. Mouse ESCs-derived neural progenitor cells generated by MS5 stromal cells induction, result in strictly neural 3D cultures of about 120-mum thick, whose cells expressed mature neuronal, astrocytes and myelin markers. Neurons were from the glutamatergic and gabaergic lineages. This nervous tissue was spatially organized in specific layers resembling brain sub-ependymal (SE) nervous tissue, and was maintained in vitro for at least 3.5 months with great stability. Electron microscopy showed the presence of mature synapses and myelinated axons, suggesting functional maturation. Electrophysiological activity revealed biological signals involving action potential propagation along neuronal fibres and synaptic-like release of neurotransmitters. The rapid development and stabilization of this 3D cultures model result in an abundant and long-lasting production that is compatible with multiple and productive investigations for neurodegenerative diseases modeling, drug and toxicology screening, stress and aging research.
Resumo:
Next-generation sequencing techniques such as exome sequencing can successfully detect all genetic variants in a human exome and it has been useful together with the implementation of variant filters to identify causing-disease mutations. Two filters aremainly used for the mutations identification: low allele frequency and the computational annotation of the genetic variant. Bioinformatic tools to predict the effect of a givenvariant may have errors due to the existing bias in databases and sometimes show a limited coincidence among them. Advances in functional and comparative genomics are needed in order to properly annotate these variants.The goal of this study is to: first, functionally annotate Common Variable Immunodeficiency disease (CVID) variants with the available bioinformatic methods in order to assess the reliability of these strategies. Sencondly, as the development of new methods to reduce the number of candidate genetic variants is an active and necessary field of research, we are exploring the utility of gene function information at organism level as a filter for rare disease genes identification. Recently, it has been proposed that only 10-15% of human genes are essential and therefore we would expect that severe rare diseases are mostly caused by mutations on them. Our goal is to determine whether or not these rare and severe diseases are caused by deleterious mutations in these essential genes. If this hypothesis were true, taking into account essential genes as a filter would be an interesting parameter to identify causingdisease mutations.
Resumo:
CHARGE syndrome, Sotos syndrome and 3p deletion syndrome are examples of rare inherited syndromes that have been recognized for decades but for which the molecular diagnostics only have been made possible by recent advances in genomic research. Despite these advances, development of diagnostic tests for rare syndromes has been hindered by diagnostic laboratories having limited funds for test development, and their prioritization of tests for which a (relatively) high demand can be expected. In this study, the molecular diagnostic tests for CHARGE syndrome and Sotos syndrome were developed, resulting in their successful translation into routine diagnostic testing in the laboratory of Medical Genetics (UTUlab). In the CHARGE syndrome group, mutation was identified in 40.5% of the patients and in the Sotos syndrome group, in 34%, reflecting the use of the tests in routine diagnostics in differential diagnostics. In CHARGE syndrome, the low prevalence of structural aberrations was also confirmed. In 3p deletion syndrome, it was shown that small terminal deletions are not causative for the syndrome, and that testing with arraybased analysis provides a reliable estimate of the deletion size but benign copy number variants complicate result interpretation. During the development of the tests, it was discovered that finding an optimal molecular diagnostic strategy for a given syndrome is always a compromise between the sensitivity, specificity and feasibility of applying a new method. In addition, the clinical utility of the test should be considered prior to test development: sometimes a test performing well in a laboratory has limited utility for the patient, whereas a test performing poorly in the laboratory may have a great impact on the patient and their family. At present, the development of next generation sequencing methods is changing the concept of molecular diagnostics of rare diseases from single tests towards whole-genome analysis.
Resumo:
Thèse réalisée en cotutelle avec Dre Christine Des Rosiers
Resumo:
Natural plant-derived products are commonly applied to treat a broad range of human diseases, including cancer as well as chronic and acute airway inflammation. In this regard, the monoterpene oxide 1,8-cineol, the active ingredient of the clinically approved drug Soledum®, is well-established for the therapy of airway diseases, such as chronic sinusitis and bronchitis, chronic obstructive pulmonary disease and bronchial asthma. Although clinical trials underline the beneficial effects of 1,8-cineol in treating inflammatory diseases, the molecular mode of action still remains unclear. Here, we demonstrate for the first time a 1,8-cineol-depending reduction of NF-κB-activity in human cell lines U373 and HeLa upon stimulation using lipopolysaccharides (LPS). Immunocytochemistry further revealed a reduced nuclear translocation of NF-κB p65, while qPCR and western blot analyses showed strongly attenuated expression of NF-κB target genes. Treatment with 1,8-cineol further led to increased protein levels of IκBα in an IKK-independent matter, while FRET-analyses showed restoring of LPS-associated loss of interaction between NF-κB p65 and IκBα. We likewise observed reduced amounts of phosphorylated c-Jun N-terminal kinase 1/2 protein in U373 cells after exposure to 1,8-cineol. In addition, 1,8-cineol led to decreased amount of nuclear NF-κB p65 and reduction of its target gene IκBα at protein level in human peripheral blood mononuclear cells. Our findings suggest a novel mode of action of 1,8-cineol through inhibition of nuclear NF-κB p65 translocation via IκBα resulting in decreased levels of proinflammatory NF-κB target genes and may therefore broaden the field of clinical application of this natural drug for treating inflammatory diseases.
Resumo:
The changes incurred in the financial system with the introduction of new technologies and new forms of administration of banks has caused impact on the health of workers. These changes, which passed in the process of work, generate a combined share of the risk factors that result in numerous injuries and illnesses among banks, notably between the operators of banks tellers. The Work-Related Musculoskeletal Disordes - WRMD represent a group of occupational diseases always present among these workers. Because of its high incidence and the amount of financial resour envolved to manage the problem has been the object of constant study. This paper aims to analyze the bank teller activity; search the occurrence of WRMD in the activity, identifying the factors determining the occurrence of WRMD in the activity and determine the real number of touchs on a keyboard made by the operator and propose solutions that influence the reduction of illness in the workplace of the bank teller. Methodological tools of ergonomics are used to provide a broad knowledge of aspects of work that have been studied and influential in the generation of occupational diseases studied. It was found that activity put workers to serious risk of occupational diseases. As the main contributory factors and determinants for this illness: the requirements and control the numbers daily endorsements; evaluation system based on performance targets for productivity; management system at time of service to customers; work with stressful factors (broken box); excess of time worked; furniture of workstations with ergonomic inadequacies and policy for the prevention of occupational diseases inefficient. They have also noted cases of illness for DORT workers without fulfilling the legal requirement of the issuance of the communication of labour accident and without the removal of the employee of the workplace
Resumo:
In this work, the use of a natural yttrium oxide and rare earth oxide solid solution (CRE2O3) as stabilizers of the alpha-Si3N4 phase to form alpha-SiAlON has been investigated. This oxide mix is produced at FAENQUIL-DEMAR, at a cost of only 20% of pure commercial Y2O3. Two alpha-SiAlONs using pure Y2O3 or CRE2O3 have been prepared, using mixes of 20% by volume of a molar fraction of 9:1 of AlN to Y2O3 or AlN to CRE2O3, respectively, with 80% alpha-Si3N4. Samples were gas pressure-sintered at 1900 degreesC, under 1.5 MPa of N-2 for 60 min. Both compositions yielded alpha-SiAlON ceramics with high relative densities (98% t.d.), hardness of 18 GPa and fracture toughness of 5 Mpa m(1/2), with homogeneous microstructures composed of elongated alpha-SiAlON grains with aspect ratios of 5. It is concluded that the mixed rare earth concentrate (CRE2O3) can be used to produce alpha-SiAlON ceramics with similar microstructures and mechanical properties of alpha-SiAlON ceramics fabricated using pure Y2O3, but with the advantage of its lower production cost. (C) 2004 Elsevier B.V All rights reserved.
Resumo:
Pós-graduação em Ciência Animal - FMVA