413 resultados para Lethality


Relevância:

10.00% 10.00%

Publicador:

Resumo:

O objetivo do estudo foi descrever a ocorrência da doença meningocócica notificada no Departamento Regional de Saúde XVI, Sorocaba, São Paulo, Brasil, no período de 1999 a 2008. Em Sorocaba, a incidência anual da doença foi de cerca de dois casos por 100 mil habitantes, com aumento entre 2006 e 2008. As incidências anuais foram maiores entre 0 a 4 anos de idade. A letalidade no período foi de 21,8%, maior nas faixas etárias de 0 a 4 anos (26,4%), na qual se deu a maior incidência da doença, e com idade superior a 30 anos (28%). A confirmação diagnóstica foi laboratorial em 71% dos casos (cultura em 45,3%) e por critérios clínico-epidemiológicos em 22%. O sorogrupo B ocorreu em 45,7%; o C, em 47,3%; o W135, em 3,7%; e o Y, em 1,5% dos casos identificados, com predomínio do sorogrupo B, entre 1999 e 2003, e do C, entre 2004 e 2008. Os fenótipos B:4,7:P1.19,15 e C:23:P1.14-6 predominaram. Os resultados reforçam a necessidade de acompanhamento, de forma regional, da tendência da doença para a detecção de surtos precocemente e monitoramento de cepas circulantes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Insects encounter many microorganisms in nature and to survive they have developed counter measures against the invading pathogens. In Drosophila melanogaster research on insect immunity has mainly been focused on infections by bacteria and fungi. We have explored the immune response against natural infections of the parasite Octosporea muscaedomesticae and the Drosophila C virus as compared to natural infections of bacteria and fungi. By using Affymetrix Drosophila GeneChips, we were able to obtain 48 genes uniquely induced after parasitic infection. It was also clearly shown that natural infections led to different results than when injecting the pathogens. In order to search for the ultimate role of the lepidopteran protein hemolin, we used RNA interference (RNAi). We could show that injection of double stranded RNA (dsRNA) of Hemolin in pupae of Hyalophora cecropia led to embryonic malformation and lethality and that there was a sex specific difference. We continued the RNAi investigation of hemolin in another lepidopteran species, Antheraea pernyi, and discovered that hemolin was induced by dsRNA per se. A similar induction of hemolin was seen after infection with baculovirus and we therefore performed in vivo experiments on baculovirus infected pupae. We could show that a low dose of dsHemolin prolonged the period before the A. pernyi pupae showed any symptoms of infection, while a high dose led to a more rapid onset of symptoms. By performing in silico analysis of the hemolin sequence from A. pernyi in comparison with other Hemolin sequences, it was possible to select a number of sites that either by being strongly conserved or variable could be important targets for future studies of hemolin function.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Chronic liver inflammation during viral hepatitis is a major health problem worldwide. The role of proinflammatory cytokines, like IL-12, in breaking hepatic immune tolerance, and inducing acute liver inflammation and virus clearance is not clear. Nor is clear its role in uncontrolled severe inflammatory response, leading to fulminant hepatitis and hepatic failure. This work, focused in the study of the role of endogenous produced IL-12 in inducing hepatic inflammatory responses, demonstrates: In vitro, using adenovirus coding for IL-12, that hepatocytes stimulate CD4+ T cells in a tolerogenic manner, and that endogenous IL-12 is able to switch the immune response into Th1; and in vivo, that endogenous IL-12 induces hepatocyte damage and virus elimination in mice infected with adenovirus. In addition, and in order to study in vivo the relevance of IL-12 in acute inflammation, conditional IL-12 transgenic mice expressing IL-12 in the liver after cre-recombinase mediated induction were generated. For this purpose, an IL-12 fusion protein was created, which demonstrated high levels of bioactivity. Induction of IL-12 expression during embryonic development was achieved by crossbreeding with Act-Cre transgenic mice; induction of IL-12 expression in adult mice was achieved by a plasmid coding for the cre-recombinase. This study demonstrates that after induction, IL-12 is expressed in the liver of the transgenic mice. It also demonstrates that hepatic expression of IL-12 induces splenomegaly and liver inflammation, characterized by large infiltrations in portal tracts and veins, associated with hepatic damage, necrosis areas and lethality. Furthermore, constitutive hepatic IL-12 expression does not lead to abortion, but to total lethality, short after delivery. In conclusion, in this study, a transgenic mouse model has been generated, in which the expression of active IL-12 in the liver can be induced at any time; this model will be very helpful for studying hepatic pathologies. This study has also demonstrated that hepatic produced IL-12 is able of breaking liver tolerance inducing inflammation, virus elimination, severe hepatocyte damage, and lethality. These findings suggest IL-12 as a key cytokine in acute liver inflammation and fulminant hepatic failure. 5.1 Future studies Once the importance of IL-12 in inducing hepatic inflammation and virus elimination was demonstrated in this study, understanding the mechanisms of the IL-12 induced liver damage, and more important, how to avoid it will be the main focus in the future. It is very important to achieve hepatic inflammation for a more effective and faster viral elimination, but avoiding the toxicity of IL-12, which leads to massive liver injury and lethality is obviously necessary to allow IL-12 as therapy. For that purpose, future studies will be mainly base on three different points: 1. The determination of different cell populations present in the hepatic infiltration, which of them are responsible for liver injury, and as well their state of activation. 2. The measure of other pro- and anti-inflammatory cytokines and chemokines, which can play a role in IL-12-induced liver inflammation and hepatocyte damage. For these purposes, specific blocking antibodies (anti TNF-alpha, anti IL-12, anti IFN-g) will be used. The study with different transgenic mice: TNF-alpha Receptor knockout, TGF-b, will also help in determining the role of those cytokines during IL-12-induced liver damage and lethality. 3. The establishing of liver pathology models (viral infection, tumours, auto-antigens) in mice. Induction of IL-12 at any time of the pathology development will help in clarifying the role of IL-12 in those models. Finally, the transgenic mice expressing IL-23 in the liver will be generated.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

RNAi (RNA interference) is a powerful technology for sequence-specific targeting of mRNAs. This thesis was aimed at establishing conditions for conditional RNAi-mediated silencing first in vitro and subsequently also in transgenic mice. As a target the basic helix-loop-helix transcription factor encoding gene SCL (stem cell leukaemia also known as Tal-1 or TCL5) was used. SCL is a key regulator for haematopoietic development and ectopic expression of SCL is correlated with acute T-lymphoblastic leukaemias. Loss of SCL function studies demonstrated that ab initio deletion of SCL resulted in embryonic lethality around day E9 in gestation. To be able to conditionally inactivate SCL, RNAi technology was combined with the tetracycline-dependent regulatory system. This strategy allowed to exogenously control the induction of RNAi in a reversible fashion and consequently the generation of a completely switchable RNAi knockdown. First a suitable vector allowing for co-expression of tetracycline-controlled shRNAs (small hairpin RNAs) and constitutively active EGFP (enhanced green fluorescent protein) was generated. This novel vector, pRNAi-EGFP, was then evaluated for EGFP expression and tetracycline-mediated expression of shRNAs. Four sequences targeting different regions within the SCL mRNA were tested for their efficiency to specifically knockdown SCL. These experiments were performed in M1 murine leukaemia cells and subsequently in the HEK 293 cell line, expressing an engineered HA-tagged SCL protein. The second assay provided a solid experimental method for determining the efficiency of different SCL-siRNA knockdown constructs in tissue culture. Western blotting analyses revealed a down regulation of SCL protein for all four tested SCL-specific target sequences albeit with different knockdown efficiencies (between 25% and 100%). Furthermore, stringent tetracycline-dependent switchability of shRNA expression was confirmed by co-transfecting the SCL-specific pRNAi-EGFP vector (SCL-siRNA) together with the HA-tagged SCL expression plasmid into the HEK 293TR /T-REx cell line constitutively expressing the tetracycline repressor (TetR). These series of experiments demonstrated tight regulation of siRNA expression without background activity. To be able to control the SCL knockdown in vivo and especially to circumvent any possible embryonic lethality a transgenic mouse line with general expression of a tetracycline repressor was needed. Two alternative methods were used to generate TetR mice. The first approach was to co-inject the tetracycline-regulated RNAi vector together with a commercially available and here specifically modified T-REx expression vector (SCL-siRNA T-REx FRT LoxP mouse line). The second method involved the generation of a TetR expressor mouse line, which was then used for donating TetR-positive oocytes for pronuclear injection of the RNAi vector (SCL-siRNA T-REx mouse line). As expected, and in agreement with data from conditional Cre-controlled adult SCL knockout mice, post-transcriptional silencing of SCL by RNAi caused a shift in the maturation of red blood cell populations. This was shown in the bone marrow and peripheral blood by FACS analysis with the red blood cell-specific TER119 and CD71 markers which can be used to define erythrocyte differentiation (Lodish plot technique). In conclusion this study established conditions for effective SCL RNAi-mediated silencing in vitro and in vivo providing an important tool for further investigations into the role of SCL and, more generally, of its in vivo function in haematopoiesis and leukaemia. Most importantly, the here acquired knowledge will now allow the establishment of other completely conditional and reversible knockdown phenotypes in mice.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Smad7 ist eine inhibitorische Komponente der TGF-β- bzw. Activin-Signalweiterleitung und erfüllt eine wichtige Aufgabe bei deren Regulation. So führt eine konstitutive Überexpression von Smad7 in epithelialen Geweben zum Auftreten verschiedener Phänotypen, wie embryonaler bzw. perinataler Letalität, Hyperproliferation der Epidermis und Thymusatrophie. Auch die Entwicklung der T-Zellen im Thymus und epithelialer Anhangsgebilde wie z.B. von Haaren und Zähnen wird dadurch beeinträchtigt. In dieser Arbeit sollte nun in der adulten Maus der Effekt einer Überexpression von Smad7 in epithelialen Geweben untersucht werden. Zu diesem Zweck wurde ein, auf dem Cre/loxP-Prinzip beruhendes Transgensystem verwendet (K5-Smad7-tg und K14-creERT2), welches eine konditionell-induzierte Überexpression von Smad7 in epithelialen Zellen der adulten Maus erlaubte. Die so gezüchteten doppeltransgenen Tiere wiesen keine signifikanten Veränderungen gegenüber ihren wildtyp bzw. einfachtransgenen Geschwistertieren auf. Die Überexpression von Smad7 in epithelialen Geweben der adulten Maus zu einem Auftreten verschiedenster veränderter Phänotypen der Haut und deren Anhänge, sowie der Schneidezähne. Bei diesen Tieren konnte auch ein signifikanter Körpergewichtsverlust und eine Erhöhung der Mortalitätsrate beobachtet werden, welche sich im Verlauf nach erfolgter Rekombination einstellte. Weitere Analysen zeigten signifikante Veränderungen in der Haut und im Thymus. So konnte in der Haut eine Erhöhung der Proliferationsrate epidermaler Zellen, eine reduzierte Expression von Smad3 und im Thymus Veränderungen in der Gesamtzahl der lebenden T-Zellen und deren Differenzierung beobachtete werden. Mit dieser Arbeit konnte gezeigt werden, daß die Hemmung der Signalweiterleitung der TGF-β-Superfamilie, speziell von TGF-β und Activin, zu verschiedenen morphogenetischen Defekten der Haut und deren Anhänge, der Zähne und der T-Zellentwicklung im Thymus führt.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cancer is a multi-step process in which both the activation of oncogenes and the inactivation of tumor suppressor genes alter the normal cellular programs to a state of proliferation and growth. The regulation of a number of tumor suppressor genes and the mechanism underlying the tumor suppression have been intensively studied. Hugl-1 and Hugl-2, the human homologues of Drosophila lgl are shown to be down-regulated in a variety of cancers including breast, colon, lung and melanoma, but the mechanism responsible for loss of expression is not yet known. The regulation of gene expression is influenced by factors inducing or repressing transcription. The present study was focused on the identification and characterization of the active promoters of Hugl-1 and Hugl-2. Further, the regulation of the promoter and functional consequences of this regulation by specific transcription factors was analyzed. Experiments to delineate the function of the mouse homologue of Hugl-2, mgl2 using transgenic mice model were performed. This study shows that the active promoter for both Hugl-1 and Hugl-2 is located 1000bp upstream of transcription start sites. The study also provides first insight into the regulation of Hugl-2 by an important EMT transcriptional regulator, Snail. Direct binding of Snail to four E-boxes present in Hugl-2 promoter region results in repression of Hugl-2 expression. Hugl-1 and Hugl-2 plays pivotal role in establishment and maintenance of cell polarity in a diversity of cell types and organisms. Loss of epithelial cell polarity is a prerequisite for cancer progression and metastasis and is an important step in inducing EMT in cells. Regulation of Hugl-2 by Snail suggests one of the initial events towards loss of epithelial cell polarity during Snail-mediated EMT. Another important finding of this study is the induction of Hugl-2 expression can reverse the Snail-driven EMT. Inducing Hugl-2 in Snail expressing cells results in the re-expression of epithelial markers E-cadherin and Cytokeratin-18. Further, Hugl-2 also reduces the rate of tumor growth, cell migration and induces the epithelial phenotype in 3D culture model in cells expressing Snail. Studies to gain insight into the signaling pathways involved in reversing Snail-mediated EMT revealed that induction of Hugl-2 expression interferes with the activation of extracellular receptor kinase, Erk. Functional aspects of mammalian lgl in vivo was investigated by establishing mgl2 conditional knockout mice. Though disruption of mgl2 gene in hepatic tissues did not alter the growth and development, ubiquitous disruption of mgl2 gene causes embryonic lethality which is evident by the fact that no mgl2-/- mice were born.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Analyses of low density lipoprotein receptor-related protein 1 (LRP1) mutant mouse embryonic fibroblasts (MEFs) generated from LRP1 knock-in mice revealed that inefficient maturation and premature proteasomal degradation of immature LRP1 is causing early embryonic lethality in NPxY1 and NPxY1+2 mutant mice. In MEFs, NPxY2 mutant LRP1 showed efficient maturation but, as expected, decreased endocytosis. The single proximal NPxY1 and the double mutant NPxY1+2 were unable to reach the cell surface as an endocytic receptor due to premature degradation. In conclusion, the proximal NPxY1 motif is essential for early sorting steps in the biosynthesis of mature LRP1.rnThe viable NPxY2 mouse was used to provide genetic evidence for LRP1-mediated amyloid-β (Aβ) transport across the blood-brain barrier (BBB). Here, we show that primary mouse brain capillary endothelial cells (pMBCECs) express functionally active LRP1. Moreover, demonstrate that LRP1 mediates [125I]-Aβ1-40 transcytosis across pMBCECs in both directions, whereas no role for LRP1-mediated Aβ degradation was detected. Aβ transport across pMBCECs generated from NPxY2 knock-in mice revealed a reduced Aβ clearance in both directions compared to WT derived pMBCECs. Finally, we conclude that LRP1 is a bona-fide receptor involved in bidirectional transcytosis of Aβ across the BBB.rn

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Myostatin, ein Mitglied der TGF-β Familie von Wachstumsfaktoren, ist ein negativer Regulator des Skelettmuskelwachstums. Obwohl Myostatin nach einer Vielzahl pathologischer Zustände im Herzen massiv hochreguliert wird, ist die physiologische und pathophysiologische Funktion von Myostatin im Herzen noch kaum erforscht. Deshalb wurde im Rahmen dieser Dissertation die Funktion von Myostatin im adulten Herzen untersucht. Dazu wurden Mausmodelle, in denen Myostatin in Kardiomyozyten deletiert und überexprimiert wird, verwendet. Ich konnte zeigen, dass die akute Deletion von Myostatin in Kardiomyozyten zu einer erhöhten Lethalität, Herzinsuffizienz und Hypertrophie führt. Dabei konnte ich eine Aktivierung der AMP-aktivierten Kinase (AMPK) als Ursache der Hypertrophie identifizieren und mit Hilfe eines AMPK Inhibitors die Entstehung der Hypertrophie in vivo verhindern. Des Weiteren konnte ich in vivo und in vitro zeigen, dass Myostatin AMPK über die TGF-β-aktivierte Kinase 1 (TAK1) und seinen kanonischen Rezeptor inhibiert. Die akute Deletion von Myostatin hemmte auch die Expression von Rgs2, einem Inhibitor der Gq Signalkaskade, und führte dadurch zu einer Aktivierung dieses für Herzinsuffizienz elementaren Signalweges. Außerdem verbesserte die akute adulte Überexpression von Myostatin die Herzkontraktilität leicht, während eine langfristige Überexpression eine interstitielle Fibrose, die über TAK1 und p38 vermittelt wird, induzierte. Hiermit konnte ich Myostatin als neuen Regulator der Hypertrophie und Herzinsuffizienz etablieren.rn

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In patients with HIV-1 infection who are starting combination antiretroviral therapy (ART), the incidence of immune reconstitution inflammatory syndrome (IRIS) is not well defined. We did a meta-analysis to establish the incidence and lethality of the syndrome in patients with a range of previously diagnosed opportunistic infections, and examined the relation between occurrence and the degree of immunodeficiency. Systematic review identified 54 cohort studies of 13 103 patients starting ART, of whom 1699 developed IRIS. We calculated pooled cumulative incidences with 95% credibility intervals (CrI) by Bayesian methods and did a random-effects metaregression to analyse the relation between CD4 cell count and incidence of IRIS. In patients with previously diagnosed AIDS-defining illnesses, IRIS developed in 37.7% (95% CrI 26.6-49.4) of those with cytomegalovirus retinitis, 19.5% (6.7-44.8) of those with cryptococcal meningitis, 15.7% (9.7-24.5) of those with tuberculosis, 16.7% (2.3-50.7) of those with progressive multifocal leukoencephalopathy, and 6.4% (1.2-24.7) of those with Kaposi's sarcoma, and 12.2% (6.8-19.6) of those with herpes zoster. 16.1% (11.1-22.9) of unselected patients starting ART developed any type of IRIS. 4.5% (2.1-8.6) of patients with any type of IRIS died, 3.2% (0.7-9.2) of those with tuberculosis-associated IRIS died, and 20.8% (5.0-52.7) of those with cryptococcal meningitis died. Metaregression analyses showed that the risk of IRIS is associated with CD4 cell count at the start of ART, with a high risk in patients with fewer than 50 cells per microL. Occurrence of IRIS might therefore be reduced by initiation of ART before immunodeficiency becomes advanced.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Deficiencies of subunits of the transcriptional regulatory complex Mediator generally result in embryonic lethality, precluding study of its physiological function. Here we describe a missense mutation in Med30 causing progressive cardiomyopathy in homozygous mice that, although viable during lactation, show precipitous lethality 2-3 wk after weaning. Expression profiling reveals pleiotropic changes in transcription of cardiac genes required for oxidative phosphorylation and mitochondrial integrity. Weaning mice to a ketogenic diet extends viability to 8.5 wk. Thus, we establish a mechanistic connection between Mediator and induction of a metabolic program for oxidative phosphorylation and fatty acid oxidation, in which lethal cardiomyopathy is mitigated by dietary intervention.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Here, I merge the principles of synthetic biology1,2 and regulatory evolution3-11 to create a new species12-15 with a minimal set of known elements. Using preexisting transgenes and recessive mutations of Drosophila melanogaster, a transgenic population arises with small eyes and a different venation pattern that fulfills the criteria of a new species according to Mayr's "Biological Species Concept"7,10. The genetic circuit entails the loss of a non-essential transcription factor and the introduction of cryptic enhancers. Subsequent activation of those enhancers causes hybrid lethality. The transition from "transgenic organisms" towards "synthetic species", such as Drosophila synthetica, constitutes a safety mechanism to avoid hybridization with wild type populations and preserve natural biodiversity16-18. Drosophila synthetica is the first transgenic organism that cannot hybridize with the original wild type population but remains fertile when crossed with other transgenic animals.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

VE-PTP, a receptor-type phosphotyrosine phosphatase, associates with the tyrosine kinase receptor Tie-2 and VE-cadherin and enhances the adhesive function of the latter. Here, VE-PTP was found to be restricted to endothelial cells, with a preference for arterial endothelium. Mutant mice expressing a truncated, secreted form of VE-PTP lacking the cytoplasmic and transmembrane domains and the most membrane-proximal extracellular fibronectin type III repeat, showed severe vascular malformations causing lethality at 10 days of gestation. Although blood vessels were initially formed, the intraembryonic vascular system soon deteriorated. Blood vessels in the yolk sac developed into dramatically enlarged cavities. In explant cultures of mutant allantoides, endothelial cells were found next to vessel structures growing as cell layers. No signs for enhanced endothelial apoptosis or proliferation were observed. Thus, the activity of VE-PTP is not required for the initial formation of blood vessels, yet it is essential for their maintenance and remodeling.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In Switzerland, the incidence of equine botulism and acute pasture myodystrophy have remarkably increased in the last five years. Equine fodder-borne botulism in Europe is most likely caused by Clostridium botulinum types C and D that produce the toxins BoNT/C and BoNT/D. Horses showing signs suggestive of botulism (muscle weakness and tremors, reduced tongue tone, slow chewing, salivation and difficulties swallowing, drooping eyelids, mydriasis), especially patients that have fed on suspect fodder (mostly haylage), must be treated with anti-serum as soon as possible.They also need intensive care, which is often difficult to provide and always expensive in the face of a guarded to poor prognosis. Therefore, prevention (high standards of forage quality and vaccination) is all the more important. Pasture myodystrophy is an acute disease with signs of rhabdomyolysis and lethality rate over 90%. It affects grazing horses under frosty, windy and rainy conditions. Preliminary results indicate that Clostridium sordellii and Clostridium bifermentans producing lethal toxin may play a role in pasture myodystrophy. Our efforts concentrate on developing a new subunit vaccine for equine botulism and understanding the ethiology and pathogenesis of pasture myodystrophy with the goal of improving prevention against these highly fatal diseases that present a significant risk to our horse population.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The transmembrane ligand ephrinB2 and its cognate Eph receptor tyrosine kinases are important regulators of vascular morphogenesis. EphrinB2 may have an active signaling role, resulting in bi-directional signal transduction downstream of both ephrinB2 and Eph receptors. To separate the ligand and receptor-like functions of ephrinB2 in mice, we replaced the endogenous gene by cDNAs encoding either carboxyterminally truncated (ephrinB2(DeltaC)) or, as a control, full-length ligand (ephrinB2(WT)). While homozygous ephrinB2(WT/WT) animals were viable and fertile, loss of the ephrinB2 cytoplasmic domain resulted in midgestation lethality similar to ephrinB2 null mutants (ephrinB2(KO)). The truncated ligand was sufficient to restore guidance of migrating cranial neural crest cells, but ephrinB2(DeltaC/DeltaC) embryos showed defects in vasculogenesis and angiogenesis very similar to those observed in ephrinB2(KO/KO) animals. Our results indicate distinct requirements of functions mediated by the ephrinB carboxyterminus for developmental processes in the vertebrate embryo.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sprouting of new capillaries from pre-existing blood vessels is a hallmark of angiogenesis during embryonic development and solid tumor growth [1]. In addition to the vascular endothelial growth factor (VEGF) and its receptors, the Tie receptors and their newly identified ligands, the angiopoietins, have been implicated in the control of blood vessel formation [2,3]. Although 'knockouts' of the gene encoding the Tie2 receptor, or its activating ligand angiopoietin-1 (Ang1), result in embryonic lethality in mice due to an absence of remodeling and sprouting of blood vessels [4,5], biological activity in vitro has not yet been described for this receptor-ligand system. In an assay in which a monolayer of endothelial cells were cultured on microcarrier beads and embedded in three-dimensional fibrin gels, recombinant Ang1 (0.5-10 nM) induced the formation of capillary sprouts in a dose-dependent manner that was completely inhibited by soluble Tie2 receptor extracellular domains. In contrast with VEGF, which also induced sprouting of capillaries, Ang1 was only very weakly mitogenic for endothelial cells. Suboptimal concentrations of VEGF and Ang1 acted synergistically to induce sprout formation. Thus, the biological activity of Ang1 in vitro is consistent with the specific phenotype of mice deficient in Tie2 or Ang1. The data suggest that, like in other developmental systems, blood vessel formation requires a hierarchy of master-control genes in which VEGF and angiopoietins, along with their receptors, are amongst the most important regulators.