816 resultados para Learning in multi-agent systems
Resumo:
We consider two weakly coupled systems and adopt a perturbative approach based on the Ruelle response theory to study their interaction. We propose a systematic way of parameterizing the effect of the coupling as a function of only the variables of a system of interest. Our focus is on describing the impacts of the coupling on the long term statistics rather than on the finite-time behavior. By direct calculation, we find that, at first order, the coupling can be surrogated by adding a deterministic perturbation to the autonomous dynamics of the system of interest. At second order, there are additionally two separate and very different contributions. One is a term taking into account the second-order contributions of the fluctuations in the coupling, which can be parameterized as a stochastic forcing with given spectral properties. The other one is a memory term, coupling the system of interest to its previous history, through the correlations of the second system. If these correlations are known, this effect can be implemented as a perturbation with memory on the single system. In order to treat this case, we present an extension to Ruelle's response theory able to deal with integral operators. We discuss our results in the context of other methods previously proposed for disentangling the dynamics of two coupled systems. We emphasize that our results do not rely on assuming a time scale separation, and, if such a separation exists, can be used equally well to study the statistics of the slow variables and that of the fast variables. By recursively applying the technique proposed here, we can treat the general case of multi-level systems.
Resumo:
Nowadays the changing environment becomes the main challenge for most of organizations, since they have to evaluate proper policies to adapt to the environment. In this paper, we propose a multi-agent simulation method to evaluate policies based on complex adaptive system theory. Furthermore, we propose a semiotic EDA (Epistemic, Deontic, Axiological) agent model to simulate agent's behavior in the system by incorporating the social norms reflecting the policy. A case study is also provided to validate our approach. Our research present better adaptability and validity than the qualitative analysis and experiment approach and the semiotic agent model provides high creditability to simulate agents' behavior.
Resumo:
From a construction innovation systems perspective, firms acquire knowledge from suppliers, clients, universities and institutional environment. Building information modelling (BIM) involves these firms using new process standards. To understand the implications on interactive learning using BIM process standards, a case study is conducted with the UK operations of a multinational construction firm. Data is drawn from: a) two workshops involving the firm and a wider industry group, b) observations of practice in the BIM core team and in three ongoing projects, c) 12 semi-structured interviews; and d) secondary publications. The firm uses a set of BIM process standards (IFC, PAS 1192, Uniclass, COBie) in its construction activities. It is also involved in a pilot to implement the COBie standard, supported by technical and management standards for BIM, such as Uniclass and PAS1192. Analyses suggest that such BIM process standards unconsciously shapes the firm's internal and external interactive learning processes. Internally standards allow engineers to learn from each through visualising 3D information and talking around designs with operatives to address problems during construction. Externally, the firm participates in trial and pilot projects involving other construction firms, government agencies, universities and suppliers to learn about the standard and access knowledge to solve its specific design problems. Through its BIM manager, the firm provides feedback to standards developers and information technology suppliers. The research contributes by articulating how BIM process standards unconsciously change interactive learning processes in construction practice. Further research could investigate these findings in the wider UK construction innovation system.
Resumo:
Planning to reach a goal is an essential capability for rational agents. In general, a goal specifies a condition to be achieved at the end of the plan execution. In this article, we introduce nondeterministic planning for extended reachability goals (i.e., goals that also specify a condition to be preserved during the plan execution). We show that, when this kind of goal is considered, the temporal logic CTL turns out to be inadequate to formalize plan synthesis and plan validation algorithms. This is mainly due to the fact that the CTL`s semantics cannot discern among the various actions that produce state transitions. To overcome this limitation, we propose a new temporal logic called alpha-CTL. Then, based on this new logic, we implement a planner capable of synthesizing reliable plans for extended reachability goals, as a side effect of model checking.
Resumo:
Thesis is to Introduce an Intelligent cross platform architecture with Multi-agent system in order to equip the simulation Models with agents, having intelligent behavior, reactive and pro-active nature and rational in decision making.
Resumo:
This paper reports the findings of using multi-agent based simulation model to evaluate the sawmill yard operations within a large privately owned sawmill in Sweden, Bergkvist Insjön AB in the current case. Conventional working routines within sawmill yard threaten the overall efficiency and thereby limit the profit margin of sawmill. Deploying dynamic work routines within the sawmill yard is not readily feasible in real time, so discrete event simulation model has been investigated to be able to report optimal work order depending on the situations. Preliminary investigations indicate that the results achieved by simulation model are promising. It is expected that the results achieved in the current case will support Bergkvist-Insjön AB in making optimal decisions by deploying efficient work order in sawmill yard.
Resumo:
n order for agent-oriented software engineering to prove effective it must use principled notions of agents and enabling specification and reasoning, while still considering routes to practical implementation. This paper deals with the issue of individual agent specification and construction, departing from the conceptual basis provided by the smart agent framework. smart offers a descriptive specification of an agent architecture but omits consideration of issues relating to construction and control. In response, we introduce two new views to complement smart: a behavioural specification and a structural specification which, together, determine the components that make up an agent, and how they operate. In this way, we move from abstract agent system specification to practical implementation. These three aspects are combined to create an agent construction model, actsmart, which is then used to define the AgentSpeak(L) architecture in order to illustrate the application of actsmart.
Resumo:
Despite several examples of deployed agent systems, there remain barriers to the large-scale adoption of agent technologies. In order to understand these barriers, this paper considers aspects of marketing theory which deal with diffusion of innovations and their relevance to the agents domain and the current state of diffusion of agent technologies. In particular, the paper examines the role of standards in the adoption of new technologies, describes the agent standards landscape, and compares the development and diffusion of agent technologies with that of object-oriented programming. The paper also reports on a simulation model developed in order to consider different trajectories for the adoption of agent technologies, with trajectories based on various assumptions regarding industry structure and the existence of competing technology standards. We present details of the simulation model and its assumptions, along with the results of the simulation exercises.
Resumo:
Most of water distribution systems (WDS) need rehabilitation due to aging infrastructure leading to decreasing capacity, increasing leakage and consequently low performance of the WDS. However an appropriate strategy including location and time of pipeline rehabilitation in a WDS with respect to a limited budget is the main challenge which has been addressed frequently by researchers and practitioners. On the other hand, selection of appropriate rehabilitation technique and material types is another main issue which has yet to address properly. The latter can affect the environmental impacts of a rehabilitation strategy meeting the challenges of global warming mitigation and consequent climate change. This paper presents a multi-objective optimization model for rehabilitation strategy in WDS addressing the abovementioned criteria mainly focused on greenhouse gas (GHG) emissions either directly from fossil fuel and electricity or indirectly from embodied energy of materials. Thus, the objective functions are to minimise: (1) the total cost of rehabilitation including capital and operational costs; (2) the leakage amount; (3) GHG emissions. The Pareto optimal front containing optimal solutions is determined using Non-dominated Sorting Genetic Algorithm NSGA-II. Decision variables in this optimisation problem are classified into a number of groups as: (1) percentage proportion of each rehabilitation technique each year; (2) material types of new pipeline for rehabilitation each year. Rehabilitation techniques used here includes replacement, rehabilitation and lining, cleaning, pipe duplication. The developed model is demonstrated through its application to a Mahalat WDS located in central part of Iran. The rehabilitation strategy is analysed for a 40 year planning horizon. A number of conventional techniques for selecting pipes for rehabilitation are analysed in this study. The results show that the optimal rehabilitation strategy considering GHG emissions is able to successfully save the total expenses, efficiently decrease the leakage amount from the WDS whilst meeting environmental criteria.
Resumo:
The rapid growth of urban areas has a significant impact on traffic and transportation systems. New management policies and planning strategies are clearly necessary to cope with the more than ever limited capacity of existing road networks. The concept of Intelligent Transportation System (ITS) arises in this scenario; rather than attempting to increase road capacity by means of physical modifications to the infrastructure, the premise of ITS relies on the use of advanced communication and computer technologies to handle today’s traffic and transportation facilities. Influencing users’ behaviour patterns is a challenge that has stimulated much research in the ITS field, where human factors start gaining great importance to modelling, simulating, and assessing such an innovative approach. This work is aimed at using Multi-agent Systems (MAS) to represent the traffic and transportation systems in the light of the new performance measures brought about by ITS technologies. Agent features have good potentialities to represent those components of a system that are geographically and functionally distributed, such as most components in traffic and transportation. A BDI (beliefs, desires, and intentions) architecture is presented as an alternative to traditional models used to represent the driver behaviour within microscopic simulation allowing for an explicit representation of users’ mental states. Basic concepts of ITS and MAS are presented, as well as some application examples related to the subject. This has motivated the extension of an existing microscopic simulation framework to incorporate MAS features to enhance the representation of drivers. This way demand is generated from a population of agents as the result of their decisions on route and departure time, on a daily basis. The extended simulation model that now supports the interaction of BDI driver agents was effectively implemented, and different experiments were performed to test this approach in commuter scenarios. MAS provides a process-driven approach that fosters the easy construction of modular, robust, and scalable models, characteristics that lack in former result-driven approaches. Its abstraction premises allow for a closer association between the model and its practical implementation. Uncertainty and variability are addressed in a straightforward manner, as an easier representation of humanlike behaviours within the driver structure is provided by cognitive architectures, such as the BDI approach used in this work. This way MAS extends microscopic simulation of traffic to better address the complexity inherent in ITS technologies.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)