997 resultados para Layout optimization


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Frequent accesses to the register file make it one of the major sources of energy consumption in ILP architectures. The large number of functional units connected to a large unified register file in VLIW architectures make power dissipation in the register file even worse because of the need for a large number of ports. High power dissipation in a relatively smaller area occupied by a register file leads to a high power density in the register file and makes it one of the prime hot-spots. This makes it highly susceptible to the possibility of a catastrophic heatstroke. This in turn impacts the performance and cost because of the need for periodic cool down and sophisticated packaging and cooling techniques respectively. Clustered VLIW architectures partition the register file among clusters of functional units and reduce the number of ports required thereby reducing the power dissipation. However, we observe that the aggregate accesses to register files in clustered VLIW architectures (and associated energy consumption) become very high compared to the centralized VLIW architectures and this can be attributed to a large number of explicit inter-cluster communications. Snooping based clustered VLIW architectures provide very limited but very fast way of inter-cluster communication by allowing some of the functional units to directly read some of the operands from the register file of some of the other clusters. In this paper, we propose instruction scheduling algorithms that exploit the limited snooping capability to reduce the register file energy consumption on an average by 12% and 18% and improve the overall performance by 5% and 11% for a 2-clustered and a 4-clustered machine respectively, over an earlier state-of-the-art clustered scheduling algorithm when evaluated in the context of snooping based clustered VLIW architectures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The memory subsystem is a major contributor to the performance, power, and area of complex SoCs used in feature rich multimedia products. Hence, memory architecture of the embedded DSP is complex and usually custom designed with multiple banks of single-ported or dual ported on-chip scratch pad memory and multiple banks of off-chip memory. Building software for such large complex memories with many of the software components as individually optimized software IPs is a big challenge. In order to obtain good performance and a reduction in memory stalls, the data buffers of the application need to be placed carefully in different types of memory. In this paper we present a unified framework (MODLEX) that combines different data layout optimizations to address the complex DSP memory architectures. Our method models the data layout problem as multi-objective genetic algorithm (GA) with performance and power being the objectives and presents a set of solution points which is attractive from a platform design viewpoint. While most of the work in the literature assumes that performance and power are non-conflicting objectives, our work demonstrates that there is significant trade-off (up to 70%) that is possible between power and performance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Today's feature-rich multimedia products require embedded system solution with complex System-on-Chip (SoC) to meet market expectations of high performance at a low cost and lower energy consumption. The memory architecture of the embedded system strongly influences these parameters. Hence the embedded system designer performs a complete memory architecture exploration. This problem is a multi-objective optimization problem and can be tackled as a two-level optimization problem. The outer level explores various memory architecture while the inner level explores placement of data sections (data layout problem) to minimize memory stalls. Further, the designer would be interested in multiple optimal design points to address various market segments. However, tight time-to-market constraints enforces short design cycle time. In this paper we address the multi-level multi-objective memory architecture exploration problem through a combination of Multi-objective Genetic Algorithm (Memory Architecture exploration) and an efficient heuristic data placement algorithm. At the outer level the memory architecture exploration is done by picking memory modules directly from a ASIC memory Library. This helps in performing the memory architecture exploration in a integrated framework, where the memory allocation, memory exploration and data layout works in a tightly coupled way to yield optimal design points with respect to area, power and performance. We experimented our approach for 3 embedded applications and our approach explores several thousand memory architecture for each application, yielding a few hundred optimal design points in a few hours of computation time on a standard desktop.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper the use of probability theory in reliability based optimum design of reinforced gravity retaining wall is described. The formulation for computing system reliability index is presented. A parametric study is conducted using advanced first order second moment method (AFOSM) developed by Hasofer-Lind and Rackwitz-Fiessler (HL-RF) to asses the effect of uncertainties in design parameters on the probability of failure of reinforced gravity retaining wall. Totally 8 modes of failure are considered, viz overturning, sliding, eccentricity, bearing capacity failure, shear and moment failure in the toe slab and heel slab. The analysis is performed by treating back fill soil properties, foundation soil properties, geometric properties of wall, reinforcement properties and concrete properties as random variables. These results are used to investigate optimum wall proportions for different coefficients of variation of φ (5% and 10%) and targeting system reliability index (βt) in the range of 3 – 3.2.