920 resultados para Latent period
Resumo:
The behavior of different species during the temperature-programmed surface reaction (TPSR) of methane over various catalysts is traced by an online mass spectrometer, It is demonstrated that the transformation of MoO3 to molybdenum carbide hinders the activation of methane as well as the succeeding aromatization in the TPSR, If this transformation process is done before the reaction, the temperature needed for methane activation and benzene formation will be greatly lowered (760 and 847 K, respectively). On the basis of comparison of the catalytic behavior of molybdenum supported on different zeolites, it is suggested that the initial activation of methane is the rate-determining step of this reaction. For the cobalt catalysts supported on HMCM-22 or Mo catalysts supported on TiO2, no benzene formation could be observed during the TPSR, However, the prohibition of benzene formation is different in nature over these two catalysts: the former lacks the special properties exhibited by molybdenum carbide, which can continuously activate methane even when multiple layers of carbonaceous species are formed on its surface, while the latter cannot accomplish the aromatization reaction since there are no Bronsted acid sites to which the activated intermediates can migrate, although the activation of methane can be achieved on it. Only for the catalysts that possess both of these properties, together with the special channel structure of zeolite, can efficient methane aromatization be accomplished. (C) 2000 Academic Press.
Resumo:
The Gaussian process latent variable model (GP-LVM) has been identified to be an effective probabilistic approach for dimensionality reduction because it can obtain a low-dimensional manifold of a data set in an unsupervised fashion. Consequently, the GP-LVM is insufficient for supervised learning tasks (e. g., classification and regression) because it ignores the class label information for dimensionality reduction. In this paper, a supervised GP-LVM is developed for supervised learning tasks, and the maximum a posteriori algorithm is introduced to estimate positions of all samples in the latent variable space. We present experimental evidences suggesting that the supervised GP-LVM is able to use the class label information effectively, and thus, it outperforms the GP-LVM and the discriminative extension of the GP-LVM consistently. The comparison with some supervised classification methods, such as Gaussian process classification and support vector machines, is also given to illustrate the advantage of the proposed method.
Resumo:
A simple and environment friendly chemical route for detecting latent fingermarks by one-step single-metal nanoparticles deposition method (SND) was achieved successfully on several non-porous items. Gold nanoparticles (AuNPs) synthesized using sodium borohydride as reducing agent in the presence of glucose, were used as working solution for latent fingermarks detection. The SND technique just needs one step to obtain clear ridge details in a wide pH range (2.5-5.0), whereas the standard multi-metal deposition (MMD) technique requires six baths in a narrow pH range (2.5-2.8). The SND is very convenient to detect latent fingermarks in forensic scene or laboratory for forensic operators. The SND technique provided sharp and clear development of latent fingermarks, without background staining, dramatically diminished the bath steps.
Resumo:
A sporeling culture method using gametophyte clones developed in the early 1990s led to egg discharge occurring in the dark 5 min after the start of the dark period under growth under a 11:13 L-D photoperiod. The course of egg discharge could be disturbed by light, with irradiance as low as 5-6 mu mol photon m(-2) s(-1) causing 75-80% of the discharged eggs to detach from the oogonia and consequently to die within several hours. In order to enhance outgrowth rate of young sporophytes, a study was conducted to test the effect of controlling darkness in the period 2-3 h after dusk. When the slides were transferred from the standard 11:13 L-D regime to continuous light, eggs were discharged 5 min after the end of the light phase and peaked 5-l5 min later on first day after transfer, indicating that the female gametes "remember" the light-dark regime. This suggests the existence of an endogenous circadian rhythm. During the second and third days, very few eggs were discharged throughout the 11 h of the normal light phase of the L-D regime, indicating the inhibitory effect of continuous light and that the rhtyhm is easily damped by light.
Resumo:
Diatoms are one of the predominant contributors to global carbon fixation by accounting for over 40% of total oceanic primary production and dominate export production. They play a significant role in marine biogeochemistry cycle. The diatom mat deposits are results of vast diatoms bloom. By analysis of diatom mats in 136 degrees 00'-140 degrees 00'E, 15 degrees 00'-21 degrees 00'N, Eastern Philippines Sea, we identified the species of the diatoms as giant Ethmodiscus rex (Wallich) Hendey. AMS C-14 dating shows that the sediments rich in diatom mats occurred during 16000-28600 a B.P., which means the bloom mainly occurred during the last glacial period, while there are no diatom mat deposits in other layers. Preliminary analysis indicates that Antarctic Intermediate Water (AAIW) expanded northward and brought silicate-rich water into the area, namely, silicon leakage processes caused the bloom of diatoms. In addition, the increase of iron input is one of the main reasons for the diatom bloom.
Resumo:
Based on the analyses of foraminifer and accelerator mass spectrometer radiocarbon dating in DGKS9603 core from mid-Okinawa Trough close to bottom, oscillation curve, which expressed the relation between the surface water temperature and the depth, has been obtained by using foraminifer analysis and calculation of FP-12E transfer function. The whole core indicated seven cold phases and eight warm phases. Obvious expression of low temperature event during Middle and Late Holocene, YD,H1,H2,H3 and H4 events, as well as the short cold phase during the middle last glacial period, implied that short shifts since 50 kaBP would have been global significance. Sedimentation rate during cold phases is usually faster than that in warm stages, with the lowest rate in Holocene, which may be connected with rising sea level and principal axial of Kuroshio Current moving to west. Volcanic activities highly developed in Okinawa Trough during the Quaternary period, thus abundant volcanic glass and pumice were well preserved.
Resumo:
Because of the intrinsic difficulty in determining distributions for wave periods, previous studies on wave period distribution models have not taken nonlinearity into account and have not performed well in terms of describing and statistically analyzing the probability density distribution of ocean waves. In this study, a statistical model of random waves is developed using Stokes wave theory of water wave dynamics. In addition, a new nonlinear probability distribution function for the wave period is presented with the parameters of spectral density width and nonlinear wave steepness, which is more reasonable as a physical mechanism. The magnitude of wave steepness determines the intensity of the nonlinear effect, while the spectral width only changes the energy distribution. The wave steepness is found to be an important parameter in terms of not only dynamics but also statistics. The value of wave steepness reflects the degree that the wave period distribution skews from the Cauchy distribution, and it also describes the variation in the distribution function, which resembles that of the wave surface elevation distribution and wave height distribution. We found that the distribution curves skew leftward and upward as the wave steepness increases. The wave period observations for the SZFII-1 buoy, made off the coast of Weihai (37A degrees 27.6' N, 122A degrees 15.1' E), China, are used to verify the new distribution. The coefficient of the correlation between the new distribution and the buoy data at different spectral widths (nu=0.3-0.5) is within the range of 0.968 6 to 0.991 7. In addition, the Longuet-Higgins (1975) and Sun (1988) distributions and the new distribution presented in this work are compared. The validations and comparisons indicate that the new nonlinear probability density distribution fits the buoy measurements better than the Longuet-Higgins and Sun distributions do. We believe that adoption of the new wave period distribution would improve traditional statistical wave theory.
Resumo:
Direct air-sea flux measurements were made on RN Kexue #1 at 40 degrees S, 156 degrees E during the Tropical Ocean Global Atmosphere (TOGA) Coupled Ocean-Atmospheric Response Experiment (COARE) Intensive Observation Period (IOP). An array of six accelerometers was used to measure the motion of the anchored ship, and a sonic anemometer and Lyman-alpha hygrometer were used to measure the turbulent wind vector and specific humidity. The contamination of the turbulent wind components by ship motion was largely removed by an improvement of a procedure due to Shao based on the acceleration signals. The scheme of the wind correction for ship motion is briefly outlined. Results are presented from data for the best wind direction relative to the ship to minimize flow distortion effects. Both the time series and the power spectra of the sonic-measured wind components show swell-induced ship motion contamination, which is largely removed by the accelerometer correction scheme, There was less contamination in the longitudinal wind component than in the vertical and transverse components. The spectral characteristics of the surface-layer turbulence properties are compared with those from previous land and ocean results, Momentum and latent heat fluxes were calculated by eddy correlation and compared to those estimated by the inertial dissipation method and the TOGA COARE bulk formula. The estimations of wind stress determined by eddy correlation are smaller than those from the TOGA COARE bulk formula, especially for higher wind speeds, while those from the bulk formula and inertial dissipation technique are generally in agreement. The estimations of latent heal flux from the three different methods are in reasonable agreement. The effect of the correction for ship motion on latent heat fluxes is not as large as on momentum fluxes.
Resumo:
Potentilla fruticosa scrub, Kobresia humilis meadow and Kobresia tibetica meadow are widely distributed on the Qinghai-Tibet Plateau. During the grass exuberance period from 3 July to 4September, based on close chamber-GC method, a study on CO2 emissions from different treatments was conducted in these meadows at Haibei research station, CAS. Results indicated that mean CO2emission rates from various treatments were 672.09+152.37 mgm-2h-1 for FC (grass treatment); 425.41+191.99 mgrn-2h-1 for FJ (grass exclusion treatment); 280.36+174.83 mgrn-2h-1 for FL (grass and roots exclusion treatment); 838.95+237.02 mgm-2h-1 for GG (scrub+grass treatment); 528.48+205.67 mgm-2h-1for GC (grass treatment); 268.97 ±99.72 mgm-2h-1 for GL (grass and roots exclusion treatment); and 659.20±94.83 mgm-2h-1 for LC (grass treatment), respectively (FC, FJ, FL, GG, GC, GL, LC were the Chinese abbreviation for various treatments). Furthermore, Kobresia humilis meadow, Potentilla fruticosa scrub meadow and Kobresia tibetica meadow differed greatly in average CO2 emission rate of soil-plant system, in the order of GG>FC>LC>GC. Moreover, in Kobresia humilis meadow,heterotrophic and autotrophic respiration accounted for 42% and 58% of the total respiration of soil-plant system respectively, whereas, in Potentilla fruticosa scrub meadow, heterotrophic and autotrophic respiration accounted for 32% and 68% of total system respiration from G-G; 49% and 51%from GC. In addition, root respiration from Kobresia humilis meadow approximated 145 mgCO2m-2h-1,contributed 34% to soil respiration. During the experiment period, Kobresia humilis meadow and Potentilla fruticosa scrub meadow had a net carbon fixation of 111.11 grn-2 and 243.89 grn-2,respectively. Results also showed that soil temperature was the main factor which influenced CO2 emission from alpine meadow ecosystem, significant correlations were found between soil temperature at 5 cm depth and CO2 emission from GG, GC, FC and FJ treatments. In addition, soil moisture may be the inhibitory factor of CO2 emission from Kobresia tibetica meadow, and more detailed analyses should be done in further research.
Resumo:
In this study, we conducted eddy covariance (EC) measurements of water vapor exchange over a typical steppe in a semi-arid area of the Inner Mongolia Plateau, China. Measurement sites were located within a 25-year-old enclosure with a relatively low leaf area index (similar to 1. 5 m(2) m(-2)) and dominated by Leymus chinensis. Energy balance closure was (H + LE) = 17.09 + 0.69 x (Rn - G) (W/m(2); r(2) = 0.95, n = 6596). Precipitation during the two growing seasons of the study period was similar to the long-term average. The peak evapotranspiration in 2004 was 4 mm d(-1), and 3.5 mm d(-1) in 2003. The maximum latent heat flux was higher than the sensible heat flux, and the sensible heat flux dominated the energy budget at midday during the entire growing season in 2003; latent heat flux was the main consumption component for net radiation during the 2004 growing season. During periods of frozen soil in 2003 and 2004, the sensible heat flux was the primary consumption component for net radiation. The soil heat flux component was similar in 2003 and 2004. The decoupling coefficient (between 0.5 and 0.1) indicates that evapotranspiration was strongly controlled by saturation water vapor pressure deficit (VPD) in this grassland. The results of this research suggest that energy exchange and evapotranspiration were controlled by the phenology of the vegetation and soil water content. In addition, the amount and frequency of rainfall significantly affect energy exchange and evapotranspiration upon the Inner Mongolia plateau. (c) 2007 Published by Elsevier B.V.
Resumo:
To reveal the potential contribution of grassland ecosystems to climate change, we examined the energy exchange over an alpine Kobresia meadow on the northeastern Qinghai-Tibetan Plateau. The annual pattern of energy exchange showed a clear distinction between periods of frozen soil with the daily mean soil temperature at 5 cm (T-s5 ≤ 0 ° C) and non-frozen soil (T-s5 > 0 ° C). More than 80% of net radiation was converted to sensible heat (H) during the frozen soil period, but H varied considerably with the change in vegetation during the non-frozen soil period. Three different sub-periods were further distinguished for the later period: (1) the pre-growth period with Bowen ratio (β) > 1 was characterized by a high β of 3.0 in average and the rapid increase of net radiation associated with the increases of H, latent heat (LE) and soil heat; (2) during the Growth period when β ≤ 1, the LE was high but H fluxes was low with β changing between 0.3 and 0.4; (3) the post-growth period with average β of 3.6 when H increased again and reached a second maximum around early October. The seasonal pattern suggests that the phenology of the vegetation and the soil water content were the major factors affecting the energy partitioning in the alpine meadow ecosystem. © 2005 Elsevier B.V. All rights reserved.