999 resultados para Laser theory
Resumo:
This study reports on the development and characterization of bovine serum albumin (BSA) nanospheres containing Silicon(IV) phthalocyanine (NzPc) and/or maghemite nanoparticles (MNP), the latter introduced via ionic magnetic fluid (MF). The nanosized BSA-loaded samples were designed for synergic application while combining Photodynamic Therapy and Hyperthermia. Incorporation of MNP in the albumin-based template, allowing full control of the magnetic content, was accomplished by adding a highly-stable ionic magnetic fluid sample to the albumin suspension, following heat denaturing. The material`s evaluation was performed using Zeta potential measurements and scanning electron microscopy. The samples were characterized by steady-state techniques and time-resolved fluorescence. The in vitro assay, using human fibroblasts, revealed no cytotoxic effect in all samples investigated, demonstrating the potential of the tested system as a synergistic drug delivery system.
Resumo:
PURPOSE: To compare changes in corneal hysteresis (CH) and the corneal resistance factor (CRF) in myopic and hyperopic laser in situ keratomileusis (LASIK) and evaluate their relationship to the number of photoablative pulses delivered, a surrogate for ablation volume. SETTING: Cleveland Clinic Cole Eye Institute, Cleveland, Ohio, USA. METHODS: Preoperative and 1-week postoperative Ocular Response Analyzer measurements in eyes that had femtosecond-assisted LASIK were studied retrospectively. Changes in CH and CRF were compared and tested for correlation with the number of excimer laser pulses. RESULTS: Thirteen myopic eyes and 11 hyperopic eyes were evaluated. Preoperative corneal thickness, CH, CRF, programmed correction magnitude, flap thickness, and total number of fixed spotsize photoablative pulses were similar in the 2 groups (P>.1). Decreases in CH and CRF were greater after myopic LASIK than after hyperopic LASIK (P<.005), and changes in CRF were correlated with the number of excimer laser pulses in the myopic group only (r = -0.63, P = .02). Regardless of ablation profile, changes in CH were more strongly correlated with preoperative CH values than with attempted ablation volume. CONCLUSIONS: With comparable flap thickness and attempted ablation volumes, myopic photoablation profiles were associated with greater decreases in CRF and CH than hyperopic profiles. Results indicate that preoperative corneal biomechanical status, ablation volume, and the spatial distribution of ablation are important factors that affect corneal resistance and viscous dissipative properties differently. Preferential tissue removal in the natively thicker paracentral cornea in hyperopia may partially account for the rarity of ectasia after hyperopic LASIK.
Resumo:
Background/Aims: The use of low-level laser therapy (LLLT) in neurosurgery is still hardly disseminated and there are situations in which the effects of this therapeutic tool would be extremely relevant in this medical field. The aim of the present study is to analyze the effect of LLLT on tissue repair after the corrective surgical incision in neonates with myelomeningocele, in an attempt to diminish the incidence of postoperative dehiscences following surgical repair performed immediately after birth. Materials and Methods: Prospective pilot study with 13 patients submitted to surgery at birth who received adjuvant treatment with LLLT (group A). A diode laser CW, lambda = 685 nm, p = 21 mW, was applied punctually along the surgical incision, with 0.19 J delivered per point, accounting for a total of 4-10 J delivered energy per patient, according to the surgical wound area and then compared with the results obtained in 23 patients who underwent surgery without laser therapy (group B). Results: This pilot study disclosed a significant decline in dehiscences of the surgical wounds in neonates who were submitted to LLLT (7.69 vs. 17.39%). Conclusion: This new adjuvant therapeutic modality with LLLT aided the healing of surgical wounds, preventing morbidities, as well as shortening the period of hospital stay, which implies a reduction of costs for patients and for the institution. Copyright (C) 2010 S. Karger AG, Basel
Resumo:
PURPOSE: To evaluate laser combined with intravitreal triamcinolone acetonide (IVTA) for the management of patients with proliferative diabetic retinopathy (PDR) and clinically significant macular edema (CSME). DESIGN: Randomized clinical trial. METHODS: SETTINGS: Single center. STUDY POPULATION: Twenty-two patients with bilateral treatment,naive moderate PDR and CSME. INTERVENTION: Laser (panretinal and macular) photocoagulation was performed in each eye, followed by IVTA in one randomly assigned eye. Best,corrected visual acuity (BCVA), fundus photography, and optical coherence tomography were performed at baseline and at months 1, 3, 6, 9, and 12. MAIN OUTCOME MEASURES:. Changes in BCVA, central macular thickness (CMT), and total macular volume (TMV). RESULTS: The mean logarithm of the minimal angle of resolution (logMAR) BCVA improved significantly, and mean CMT and TMV were significantly reduced in the IVTA group compared with the laser,only group (controls) at all study follow-up visits (P < .001). The mean logMAR BCVA (Snellen equivalent) was 0.44 (20/50(-2)) for the IVTA group and 0.38 (20/50(+1)) for the controls at baseline, and 0.12 (20/25(-1)) for the IVTA group and 0.32 (20/40(-1)) for the controls at 12 months (P < .001.). The mean CMT and TMV were, respectively, 360 mu m and 8.59 mm(3) for the IVTA group and 331 mu m and 8.44 mm(3) for the controls at baseline, and 236 mu m and 7.32 mm(3) for the IVTA group and 266 mu m and 7.78 mm(3) for the controls at 12 months (P < .001). CONCLUSIONS: The combination of laser photocoagulation with IVTA was associated with improved BCVA and decreased CMT and TMV when compared with laser photocoagulation alone for the treatment of moderate PDR with CSME. (Am J Ophthalmol 2009;147:291-297. (C) 2009 by Elsevier Inc. All rights reserved.)
Resumo:
Colonius suggests that, in using standard set theory as the language in which to express our computational-level theory of human memory, we would need to violate the axiom of foundation in order to express meaningful memory bindings in which a context is identical to an item in the list. We circumvent Colonius's objection by allowing that a list item may serve as a label for a context without being identical to that context. This debate serves to highlight the value of specifying memory operations in set theoretic notation, as it would have been difficult if not impossible to formulate such an objection at the algorithmic level.
Resumo:
Odorant-induced currents in mammalian olfactory receptor neurons have proved difficult to obtain reliably using conventional whole-cell recording. By using a mathematical model of the electrical circuit of the patch and rest-of-cell, we demonstrate how cell-attached patch measurements can be used to quantitatively analyze responses to odorants or a high (100 mM) K+ solution. High K+ induced an immediate current flux from cell to pipette, which was modeled as a depolarization of similar to 52 mV, close to that expected from the Nernst equation (56 mV), and no change in the patch conductance. By contrast, a cocktail of cAMP-stimulating odorants induced a current flux from pipette into cell following a significant (4-10 s) delay. This was modeled as an average patch conductance increase of 36 pS and a depolarization of 13 mV, Odorant-induced single channels had a conductance of 16 pS. In cells bathed with no Mg2+ and 0.25 mM Ca2+, odorants induced a current flow from cell to pipette, which was modeled as a patch conductance increase of similar to 115 pS and depolarization of similar to 32 mV, All these results are consistent with cAMP-gated cation channels dominating the odorant response, This approach, which provides useful estimates of odorant-induced voltage and conductance changes, is applicable to similar measurements in any small cells.
Resumo:
A novel flow-tagging technique is presented which was employed to measure gas velocities in the free stream of a shock tube. This method is based on the laser spectroscopic techniques of Laser-Enhanced Ionisation (LEI) and Laser-Induced Fluorescence (LIF). The flow in the shock tube is seeded with small amounts of sodium, and LEI is used to produce a substantial depletion of neutral sodium atom concentration in a well-defined region of the flow, by using two wavelength-resonance excitation and subsequent collisional ionisation. At a specific time delay, single-laser-pulse planar LIF is utilised to produce a two-dimensional (2-D) inverse image of the depleted tagged region downstream of the flow. By measuring the displacement of the tagged region, free stream velocities in a shock tube were determined. Large variations in the concentration of sodium seeded into the flow were observed and even in the presence of these large variations accurate free-stream velocity measurements were obtained. The experimentally determined value for velocity compares very well with the predicted velocity.
Resumo:
Brain injury is responsible for significant morbidity and mortality in trauma patients, but controversy still exists over therapeutic management for these patients. The objective of this study was to analyze the effect of phototherapy with low intensity lasers on local and systemic immunomodulation following cryogenic brain injury. Laser phototherapy was applied (or not-controls) immediately after cryogenic brain injury performed in 51 adult male Wistar rats. The animals were irradiated twice (3 h interval), with continuous diode laser (gallium-aluminum-arsenide (GaAlAs), 780 nm, or indium-gallium-aluminum-phosphide (InGaAlP), 660 nm) in two points and contact mode, 40 mW, spot size 0.042 cm(2), 3 J/cm(2) and 5 J/cm(2) (3 s and 5 s, respectively). The experimental groups were: Control (non-irradiated), RL3 (visible red laser/ 3 J/cm(2)), RL5 (visible red laser/5 J/cm(2)), IRL3 (infrared laser/ 3 J/cm(2)), IRL5 (infrared laser/5 J/cm(2)). The production of interleukin-1IL-1 beta (IL-1 beta), interleukin6 (IL-6), interleukin-10 (IL-10), and tumor necrosis factor-alpha (TNF-alpha) was analyzed by enzyme immunoassay technique (ELISA) test in brain and blood samples. The IL-1 beta concentration in brain of the control group ;was significantly reduced in 24 h (p < 0.01). This reduction was also observed in the RL5 and IRL3 groups. The TNF-alpha and IL-6 concentrations increased significantly (p < 0.01 and p < 0.05, respectively) in the blood of all groups, except by the IRL3 group. The IL-6 levels in RL3 group were significantly smaller than in control group in both experimental times. IL-10 concentration was maintained stable in all groups in brain and blood. Under the conditions of this study, it is possible to conclude that the laser phototherapy can affect TNF-alpha, IL-1 beta and IL-6 levels in the brain and in circulation in the first 24 h following cryogenic brain injury. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
The spatial and temporal evolution of a depleted atomic distribution created by laser enhanced ionisation (LEI) was employed to determine both a diffusion coefficient for sodium (Na) and an electron (e(-)) and sodium ion recombination rate coefficient in an analytical air-C2H2 flame. A depleted distribution of neutral sodium atoms was produced in a flame by ionising approximately 80% of the irradiated sodium atoms in a well defined region using a two step LEI excitation scheme. Following depletion by ionisation, planar laser induced fluorescence (PLIF) images of the depleted region recorded the diffusion and decay of the depleted Na distribution for different depletion-probe delays. From measurements of the diffused width of the distribution, an accurate diffusion coefficient D = (1.19 +/- 0.03) x 10(-3) m(2) s(-1) for Na was determined in teh burnt gases of the flame. Measurements of the integrated fluorescence intensity in the depleted region for different depletion-probe delays were related to an increase in atomic sodium concentration caused by electron-ion recombination. At high concentrations (greater than or equal to 50 mu g ml(-1)), where the electron and ion concentrations in the depleted region were assumed equal, a recombination rate coefficient of 4.2 x 10(-9) cm(3) s(-1) was calculated. (C) 1997 Elsevier Science B.V.
Resumo:
Background and Objectives: Chronic autoimmune thyroiditis (CAT) remains the most common cause of acquired hypothyroidism There is currently no therapy that is capable of regenerating CAT-damaged thyroid tissue The objective of this study was to gauge the value of applying low-level laser therapy (LLLT) in CAT patients based on both ultrasound studies (USs) and evaluations of thyroid function and thyroid autoantibodies. Study Design/Materials and Methods: Fifteen patients who had hypothyroidism caused by CAT and were undergoing levothyroxine (LT4) treatment were selected to participate in the study Patients received 10 applications of LLLT (830 nm, output power 50 mW) in continuous mode, twice a week, using either the punctual technique (8 patients) or the sweep technique (7 patients), with fluence in the range of 38-108 J/cm(2) USs were performed prior to and 30 days after LLLT USs included a quantitative analysis of echogenicity through a gray-scale computerized histogram index (El). Following the second ultrasound (30 days after LLLT), LT4 was discontinued in all patients and, if required, reintroduced Truodothyronine, thyroxine (T4), free T4, thyrotropin, thyroid peroxidase (TPOAb) and thyroglobulin (TgAb) antibodies levels were assessed before LLLT and then 1, 2, 3, 6, and 9 months after LT4 withdrawal. Results: We noted all patients` reduced LT4 dosage needs, including 7 (47%) who did not require any LT4 through the 9-month follow-up The LT4 dosage used pre-LLLT (96 +/- 22 mu g/day) decreased in the 9th month of follow-up (38 23 mu g/day; P<0.0001) TPOAb levels also decreased (pre-LLLT = 982 +/- 530 U/ml, post-LLLT = 579 454 U/ml, P = 0 016) TgAb levels were not reduced, though we did observe a post-LLLT increase in the EI (pre-LLLT = 0 99 +/- 0.09, post-LLLT= 1.21 +/- 0.19, P=0.001) Conclusion: The preliminary results indicate that LLLT promotes the improvement of thyroid function, as patients experienced a decreased need for LT4, a reduction in TPOAb levels, and an increase in parenchymal echogenicity Lasers Surg. Med. 42:589-596, 2010. (C) 2010 Wiley-Liss, Inc