965 resultados para Laser Induced Fluorescence
Resumo:
The present thesis is a contribution to the study of laser-solid interaction. Despite the numerous applications resulting from the recent use of laser technology, there is still a lack of satisfactory answers to theoretical questions regarding the mechanism leading to the structural changes induced by femtosecond lasers in materials. We provide here theoretical approaches for the description of the structural response of different solids (cerium, samarium sulfide, bismuth and germanium) to femtosecond laser excitation. Particular interest is given to the description of the effects of the laser pulse on the electronic systems and changes of the potential energy surface for the ions. Although the general approach of laser-excited solids remains the same, the potential energy surface which drives the structural changes is calculated with different theoretical models for each material. This is due to the difference of the electronic properties of the studied systems. We use the Falicov model combined with an hydrodynamic method to study photoinduced phase changes in cerium. The local density approximation (LDA) together with the Hubbard-type Hamiltonian (LDA+U) in the framework of density functional theory (DFT) is used to describe the structural properties of samarium sulfide. We parametrize the time-dependent potential energy surface (calculated using DFT+ LDA) of bismuth on which we perform quantum dynamical simulations to study the experimentally observed amplitude collapse and revival of coherent $A_{1g}$ phonons. On the basis of a time-dependent potential energy surface calculated from a non-orthogonal tight binding Hamiltonian, we perform molecular dynamics simulation to analyze the time evolution (coherent phonons, ultrafast nonthermal melting) of germanium under laser excitation. The thermodynamic equilibrium properties of germanium are also reported. With the obtained results we are able to give many clarifications and interpretations of experimental results and also make predictions.
Resumo:
An electronic theory is developed, which describes the ultrafast demagnetization in itinerant ferromagnets following the absorption of a femtosecond laser pulse. The present work intends to elucidate the microscopic physics of this ultrafast phenomenon by identifying its fundamental mechanisms. In particular, it aims to reveal the nature of the involved spin excitations and angular-momentum transfer between spin and lattice, which are still subjects of intensive debate. In the first preliminary part of the thesis the initial stage of the laser-induced demagnetization process is considered. In this stage the electronic system is highly excited by spin-conserving elementary excitations involved in the laser-pulse absorption, while the spin or magnon degrees of freedom remain very weakly excited. The role of electron-hole excitations on the stability of the magnetic order of one- and two-dimensional 3d transition metals (TMs) is investigated by using ab initio density-functional theory. The results show that the local magnetic moments are remarkably stable even at very high levels of local energy density and, therefore, indicate that these moments preserve their identity throughout the entire demagnetization process. In the second main part of the thesis a many-body theory is proposed, which takes into account these local magnetic moments and the local character of the involved spin excitations such as spin fluctuations from the very beginning. In this approach the relevant valence 3d and 4p electrons are described in terms of a multiband model Hamiltonian which includes Coulomb interactions, interatomic hybridizations, spin-orbit interactions, as well as the coupling to the time-dependent laser field on the same footing. An exact numerical time evolution is performed for small ferromagnetic TM clusters. The dynamical simulations show that after ultra-short laser pulse absorption the magnetization of these clusters decreases on a time scale of hundred femtoseconds. In particular, the results reproduce the experimentally observed laser-induced demagnetization in ferromagnets and demonstrate that this effect can be explained in terms of the following purely electronic non-adiabatic mechanism: First, on a time scale of 10–100 fs after laser excitation the spin-orbit coupling yields local angular-momentum transfer between the spins and the electron orbits, while subsequently the orbital angular momentum is very rapidly quenched in the lattice on the time scale of one femtosecond due to interatomic electron hoppings. In combination, these two processes result in a demagnetization within hundred or a few hundred femtoseconds after laser-pulse absorption.
Resumo:
In this work, we present an atomistic-continuum model for simulations of ultrafast laser-induced melting processes in semiconductors on the example of silicon. The kinetics of transient non-equilibrium phase transition mechanisms is addressed with MD method on the atomic level, whereas the laser light absorption, strong generated electron-phonon nonequilibrium, fast heat conduction, and photo-excited free carrier diffusion are accounted for with a continuum TTM-like model (called nTTM). First, we independently consider the applications of nTTM and MD for the description of silicon, and then construct the combined MD-nTTM model. Its development and thorough testing is followed by a comprehensive computational study of fast nonequilibrium processes induced in silicon by an ultrashort laser irradiation. The new model allowed to investigate the effect of laser-induced pressure and temperature of the lattice on the melting kinetics. Two competing melting mechanisms, heterogeneous and homogeneous, were identified in our big-scale simulations. Apart from the classical heterogeneous melting mechanism, the nucleation of the liquid phase homogeneously inside the material significantly contributes to the melting process. The simulations showed, that due to the open diamond structure of the crystal, the laser-generated internal compressive stresses reduce the crystal stability against the homogeneous melting. Consequently, the latter can take a massive character within several picoseconds upon the laser heating. Due to the large negative volume of melting of silicon, the material contracts upon the phase transition, relaxes the compressive stresses, and the subsequent melting proceeds heterogeneously until the excess of thermal energy is consumed. A series of simulations for a range of absorbed fluences allowed us to find the threshold fluence value at which homogeneous liquid nucleation starts contributing to the classical heterogeneous propagation of the solid-liquid interface. A series of simulations for a range of the material thicknesses showed that the sample width we chosen in our simulations (800 nm) corresponds to a thick sample. Additionally, in order to support the main conclusions, the results were verified for a different interatomic potential. Possible improvements of the model to account for nonthermal effects are discussed and certain restrictions on the suitable interatomic potentials are found. As a first step towards the inclusion of these effects into MD-nTTM, we performed nanometer-scale MD simulations with a new interatomic potential, designed to reproduce ab initio calculations at the laser-induced electronic temperature of 18946 K. The simulations demonstrated that, similarly to thermal melting, nonthermal phase transition occurs through nucleation. A series of simulations showed that higher (lower) initial pressure reinforces (hinders) the creation and the growth of nonthermal liquid nuclei. For the example of Si, the laser melting kinetics of semiconductors was found to be noticeably different from that of metals with a face-centered cubic crystal structure. The results of this study, therefore, have important implications for interpretation of experimental data on the kinetics of melting process of semiconductors.
Resumo:
The mechanisms of refractive index change in poly(methyl methacrylate) by frequency doubled femtosecond laser pulses are investigated. It is demonstrated that positive refractive index modificaton can be caused by a combination of depolymerization and crosslinking.
Resumo:
Fluorescence is a troublesome side effect in laboratory Raman studies on sulfuric acid solutions and aerosol particles. We performed experiments showing that organic matter induces fluorescence in H2SO4/H2O solutions. The intensity of the fluorescence signal appears to be almost independent of the concentration of the organic substances, but depends strongly on the sulfuric acid concentration. The ubiquity of organic substances in the atmosphere, their relatively high abundance, and the insensitivity of the fluorescence with respect to their concentrations will render most acidic natural aerosols subject to absorption and fluorescence, possibly influencing climate forcing. We show that, while fluorescence may in the future become a valuable tool of aerosol diagnostics, the concurrent absorption is too small to significantly affect the atmosphere's radiative balance.
Resumo:
The purpose of this research was to evaluate the severity of renal ischemia/reperfusion injury as determined by histology and by laser-induced fluorescence (LIF) with excitation wavelengths of 442 nm and 532 nm. Wistar rats (four groups of six animals) were subjected to left renal warm ischemia for 20, 40, 60 and 80 min followed by 10 min of reperfusion. Autofluorescence was determined before ischemia (control) and then every 5-10 min thereafter. Tissue samples for histology were harvested from the right kidney (control) and from the left kidney after reperfusion. LIF and ischemia time showed a significant correlation (p < 0.0001 and r (2)=0.47, and p=0.006 and r (2)=0.25, respectively, for the excitation wavelengths of 442 nm and 532 nm). Histological scores showed a good correlation with ischemia time (p < 0.0001). The correlations between optical spectroscopy values and histological damage were: LIF at 442 nm p < 0.0001, LIF at 532 nm p=0.001; IFF (peak of back scattered light/LIF) at 442 nm p > 0.05, and IFF at 532 nm p > 0.05. After reperfusion LIF tended to return to preischemic basal levels which occurred in the presence of histological damage. This suggests that factors other than morphological alterations may have a more relevant effect on changes observed in LIF. In conclusion, renal ischemia/reperfusion changed tissue fluorescence induced by laser. The excitation light of 442 nm showed a better correlation with the ischemia time and with the severity of tissue injury.
Resumo:
Steatosis is diagnosed on the basis of the macroscopic aspect of the liver evaluated by the surgeon at the time of organ extraction or by means of a frozen biopsy. In the present study, the applicability of laser-induced fluorescence (LIF) spectroscopy was investigated as a method for the diagnosis of different degrees of steatosis experimentally induced in rats. Rats received a high-lipid diet for different periods of time. The animals were divided into groups according to the degree of induced steatosis diagnosis by histology. The concentration of fat in the liver was correlated with LIF by means of the steatosis fluorescence factor (SFF). The histology classification, according to liver fat concentration was, Severe Steatosis, Moderate Steatosis, Mild Steatosis and Control (no liver steatosis). Fluorescence intensity could be directly correlated with fat content. It was possible to estimate an average of fluorescence intensity variable by means of different confidence intervals (P=95%) for each steatosis group. SFF was significantly higher in the Severe Steatosis group (P < 0.001) compared with the Moderate Steatosis, Mild Steatosis and Control groups. The various degrees of steatosis could be directly correlated with SFF. LIF spectroscopy proved to be a method capable of identifying the degree of hepatic steatosis in this animal model, and has the potential of clinical application for non-invasive evaluation of the degree of steatosis.
Resumo:
Sewage sludge from wastewater treatment contains organic matter and plant nutrients that can play an important role in agricultural production and the maintenance of soil fertility, The present study has aimed to evaluate the degree of humification following sewage sludge application of soil organic matter by laser-induced fluorescence and humic acids using ultraviolet-visible fluorescence, and including comparison with Fourier-transform infrared spectroscopy and elemental analysis. Sewage sludge applications to the soil caused a decrease in the degree of humification of the soil organic matter and humic acids for both a Typic Eutrorthox (clayey) soil and a Typic Haplorthox (sandy) soil of around 14 and 27%, respectively. This effect is probably clue to incorporation of newly formed humic substances from the sewage sludge into the characteristics of less humified material, and to the indigenous soil humic substances. The minor alterations observed in the clay soil probably occurred due to both the greater mineral association, which better stabilized the indigenous soil organic matter, and the higher microbial activity in this soil, which accelerated sewage sludge mineralization. Sewage sludge applications increased the C content for the clay and sandy soils by 7.4 and 15.4 g kg(-1), respectively, suggesting a positive effect on these two soils.
Resumo:
In order to investigate optically excited electronic transport in Er-doped SnO2, thin films are excited with the fourth harmonic of an Nd:YAG laser (266nm) at low temperature, yielding conductivity decay when the illumination is removed. Inspection of these electrical characteristics aims knowledge for electroluminescent devices operation. Based on a proposed model where trapping defects present thermally activated cross section, the capture barrier is evaluated as 140, 108, 100 and 148 meV for doped SnO2, thin films with 0.0, 0.05, 0. 10 and 4.0 at% of Er, respectively. The undoped film has vacancy levels as dominating, whereas for doped films. there are two distinct trapping centers: Er3+ substitutional at Sn lattice sites and Er3+ located at grain boundary. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Pulse repetition rates and the number of laser pulses are among the most important parameters that do affect the analysis of solid materials by laser induced breakdown spectroscopy, and the knowledge of their effects is of fundamental importance for suggesting analytical strategies when dealing with laser ablation processes of polymers. In this contribution, the influence of these parameters in the ablated mass and in the features of craters was evaluated in polypropylene and high density polyethylene plates containing pigment-based PbCrO4. Surface characterization and craters profile were carried out by perfilometry and scanning electron microscopy. Area, volume and profile of craters were obtained using Taylor Map software. A laser induced breakdown spectroscopy system consisted of a Q-Switched Nd:YAG laser (1064 nm, 5 ns) and an Echelle spectrometer equipped with ICCD detector were used. The evaluated operating conditions consisted of 10, 25 and 50 laser pulses at 1, 5 and 10 Hz, 250 mJ/pulse (85 J cm(-2)), 2 mu s delay time and 6 mu s integration time gate. Differences in the topographical features among craters of both polymers were observed. The decrease in the repetition rate resulted in irregular craters and formation of edges, especially in polypropylene sample. The differences in the topographical features and ablated masses were attributed to the influence of the degree of crystallinity, crystalline melting temperature and glass transition temperature in the ablation process of the high density polyethylene and polypropylene. It was also observed that the intensities of chromium and lead emission signals obtained at 10 Hz were two times higher than at 5 Hz by keeping the number of laser pulses constant. (C) 2011 Elsevier B. V. All rights reserved.
Resumo:
This paper reports the synthesis of Au nanoparticles by 30-fs pulses irradiation of a sample containing HAuCl4 and chitosan, a biopolymer used as reducing agent and stabilizer. We observed that it is a multi-photon induced process, with a threshold irradiance of 3.8 x 10(11) W/cm(2) at 790 nm. By transmission electron microscopy we observed nanoparticles from 8 to 50 nm with distinct shapes. Infrared spectroscopy indicated that the reduction of gold and consequent production of nanoparticles is related to the fs-pulse induced oxidation of hydroxyl to carbonyl groups in chitosan. (C) 2011 Optical Society of America
Resumo:
The effects of laser focusing and fluence on LIBS analysis of pellets of plant leaves was evaluated. A Q-switched Nd:YAG laser (5ns, 10Hz, 1064nm) was used and the emission signals were collected by lenses into an optical fiber coupled to a spectrometer with Echelle optics and ICCD. Data were acquired from the accumulation of 20 laser pulses at 2.0 mu s delay and 5.0 mu s integration time gate. The emission signal intensities increased with both laser fluence and spot size. Higher sensitivities for Ca, K, Mg, P, Al, B, Cu, Fe, Mn, and Zn determinations were observed for fluences in the range from 25 to 60Jcm(-2). Coefficients of variation of site-to-site measurements were generally lower than 10% (n=30 sites, 20 laser pulses/site) for a fluence of 50Jcm(-2) and 750 mu m spot size. For most elements, there is an indication that accuracy is improved with higher fluences. (C) 2012 Elsevier B.V. All rights reserved.