971 resultados para Larval Metamorphosis
Resumo:
All larval stages and the first crab instar of Paradasygyius depressus (Bell) were obtained in laboratory culture. Larval development consists of two zoeal stages, followed by the megalopa. Each larval stage is described in detail. Beginning with the first zoea, the duration of each stage was 4--7 (4.5 +/- 0.7), 4-5 (4.5 +/- 0.5), and 7 days, the megalopa and first crab instar appearing 11 +/- 1 and 15 days after hatching, respectively. A phylogenetic analysis of 21 genera of Majidae is provided based on 34 zoeal and three megalopal characters. The phylogenetic analysis resulted in four equally parsimonious trees 173 steps long (CI = 0.66, RI = 0.71, and RC = 0.47) supporting the monophyly of Oregoniinae, Majinae, and Inachinae (with the exclusion of Macrocheira de Haan incertae sedis). Based on general agreement of sister-group hypotheses, we provide sets of larval characters that define Oregoniinae, Majinae, and Inachinae. Our phylogenetic hypothesis suggests that Oregoniinae is the most basal clade within the Majidae, and Majinae and the clade (Epialtus H. Milne Edwards + Inachinae [excluding Macrocheira incertae sedis]) are sister taxa. Within Inachinae, all trees suggest that Inachus Weber and Macropodia Leach are sister taxa nested as the most derived clade, followed by Achaeus Leach, Pyromaia Stimpson, Paradasygyius Garth, Anasimus A. Milne-Edwards, and the most basal Stenorhynchus Lamarck. The sister-group relationships of the clade (Pisa Leach (Taliepus A. Milne-Edwards + Libinia Leach)), Mithrax Latreille and Microphrys H. Milne Edwards remained unresolved.
Resumo:
Larval development of Macrocoeloma diplacanthum (Stimpson) consists of two zoeal stages, followed by the megalopa. Each larval stage is described in detail. The duration of the zoeal stages was 2-3 (2.4 +/- 0.5) and 3-4 (3.5 +/- 0.5) days for the first and second zoea, respectively, the megalopa phase appearing 6-8 (7.0 +/- 0.5) days after hatching. Unlike for other majids, zoeal stages of M. diplacanthum can be readily distinguished by their distended forehead with strong underlying muscle bands, undercut dorsal carapace spine, and spine on the terminal endopod segment of the first maxilliped. No other known mithracine or majid zoeae exhibit this combination of features. Our zoeal account of M. diplacanthum from Mexico is remarkably consistent with Floridian specimens previously described. However, we have found some differences between descriptions, which could be attributed to natural variation or inadequate description. Previous attempts to evaluate the relationships within Mithacinae have been based on larval characters widely distributed throughout Majidae and therefore are considered inadequate to infer sister-group relationships. The phylogenetic analysis of majids suggested that the position of Mithracinae is still uncertain, as is its monophyletic status. We recommend that additional characters, particularly of the megalopa phase, be sought for a better resolution of majid evolutionary history.
Resumo:
We re-evaluated the larval support for families within majoids using the Wilcoxon signed-rank test with emphasis on Inachoididae. To accomplish our objectives, we added 10 new taxa, two of which are traditionally assigned to the family of special interest, to a previous larval database for majoids, and re-appraised the larval characters used in earlier studies. Phylogenetic analysis was performed with PAUP* using the heuristic search with 50 replicates or the branch-and-bound algorithm when possible. Multi-state transformation series were considered unordered; initially characters were equally weighted followed by successive weighting, and trees were rooted at the Oregoniidae node. Ten different topological constraints were enforced for families to evaluate tree length under the assumption of monophyly for each taxonomic entity. Our results showed that the tree length of most constrained topologies was not considerably greater than that of unconstrained analysis in which most families nested as paraphyletic taxa. This may indicate that the present larval database does not provide strong support for paraphyly of the taxa in question. For Inachoididae, although the Wilcoxon signed-rank test rejected a significant difference between unconstrained and constrained cladograms, we were unable to provide a single synapomorphy for this clade. Except for the conflicting position of Leurocyclus and Stenorhynchus, the two clades correspond to the traditional taxonomic arrangement. Among inachoidids, the clade (Anasimus (Paradasygyius (Collodes + Pyromaia))) is supported, whereas for inachids, the clade (Inachus (Macropodia + Achaeus)) is one of the most supported clades within majids. As often stated, only additional characters will provide a better test for the monophyly of Inachoididae and other families within Majoidea.
Resumo:
Apiomithrax violaceus (A. Milne Edwards, 1868 ) is a pisid majoid crab occurring in tropical and subtropical coastal waters of the eastern and western South Atlantic. Larval development consists of two zoeal stages and a megalopa. Beginning with the first zoea, the duration of each larval stage at 24degreesC was 3-8 (5+/-1), 3-5 (4+/-0.5) and 9-15 (11+/-2) days, the megalopa and first crab instar appearing 9-11 (10+/-1) and 20-27 (23+/-2) days after hatching, respectively. Larval characters agree with those proposed for the Majoidea, in having nine or more setae on the scaphognathite in the first zoea and well-developed pleopods in the second zoea. However, larvae of A . violaceus do not fit larval pisid features. Zoeal stages differ from most other Pisidae in having lateral spines, a long rostral spine extending beyond the antenna, two spines per telson fork and a dorsolateral process on the third abdominal somite. The megalopa differs in having a spine dorsally on the carapace and on the basial segment of the second pereiopod. Two characters that are potentially unique to Apiomithrax include a zoeal antenna with an exopod that is much longer than the protopod, and a rostral spine that is longer than the dorsal spine. These characters should facilitate the identification of this taxon and could also be useful for phylogenetic studies. A review of larvae of 28 species among 14 genera indicated that there is no apparent single larval character that differentiates the Pisidae, with more limited phylogenetic analyses suggesting that this is a paraphyletic group. Apiomithrax , Eurynolambrus , Pisoides , Rochinia and Scyra have the most divergent morphological characters within the family. The analysis and inclusion of additional taxa is likely to shed more light on the sister-group relationships of the Pisidae. However, based on the extent of morphological interspecific variability of known larvae it is likely that the group, as presently defined by adult morphology, is not monophyletic.
Resumo:
Predation of zoeas by megalopae of Ucides cordatus is frequently observed in the laboratory during larval rearing, a phenomenon that could considerably reduce the output of larviculture. Experiments were carried out in the present study to assess how the survivorship of larvae at the end of the larviculture is influenced by cannibalism by megalopae on the larvae of earlier stages, as well as on other megalopae. In addition, tests were performed to assess whether the adoption of different feeding protocols can decrease cannibalism rates. Experiments were carried out in plastic vials containing ocean water (salinity 25 g L-1) under controlled environmental conditions (26 degrees C and 16:8 h LD photoperiod). An ensemble analysis of all the developmental stages indicated that zoeal mortality rates were significantly higher in the presence of megalopae, a result that is consistent with cannibalism by megalopae. However, separate analysis for each developmental stage indicated that only zoea IV, V and VI show reduced survivorship. No cannibalism was detected among megalopae. Food supplementation using Artemia sp. at a density of 6 nauplii mL(-1) proved to be successful in reducing cannibalism rates, whereas supplementation at a lower density (0.3 nauplii mL(-1)) failed to show such an effect. The implications of these results for the larviculture of U. cordatus are discussed.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The ultrastructure of the fat body cells (trophocytes) of the last larval instar of Pachycondyla (= Neoponera) villosa is presented. The cytoplasm is restricted to the cell periphery and to the smaller strips among the vacuoles, protein granules, lipid droplets, and around the nucleus. Cytochemically, the presence of basic amino acids in the protein granules and in the nuclei was observed by using the ethanolic phosphotungstic acid technique (EPTA). The lipid droplets stained for unsaturated lipids. This result was further confirmed by gas chromatography and mass spectrometry, where the unsaturated fatty acids were identified as oleic and linoleic acids together with saturated fatty acids such as palmitic and stearic acid. Carbohydrates (glycogen) were also detected in the fat body. The glycogen is present as beta particles distributed among the lipid droplets and sometimes attached to them.
Resumo:
A glândula salivar apresenta-se com um duto anterior único, formado por um epitélio colunar, dois dutos laterais curtos, os quais apresentam-se com epitélio cúbico simples e que na sua porção mais proximal torna-se colunar. Posterior a estes, encontram-se os dois reservatórios, os quais possuem o epitélio bastante delgado e é neste reservatório que a região secretora da glândula se abre. Os ramos dorsal e ventral da região secretora da glândula conectam-se por meio de comissuras transversais, sendo que, posteriormente, a região secretora termina em forma de alça. A região secretora é uniforme, não apresenta tipos celulares distintos e é formada por um epitélio cúbico simples. Neste trabalho é apresentada, também, a revisão sobre a morfologia da glândula salivar larval em insetos, principalmente com relação aos Hymenoptera-Aculeata.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The mechanism of silk formation in Apis mellifera salivary glands, during the 5th instar, was studied. Larval salivary glands were dissected and prepared for light and polarized light microscopy, as well as for scanning and transmission electron microscopy. The results showed that silk formation starts at the middle of the 5th instar and finishes at the end of the same instar. This process begins in the distal secretory portion of the gland, going towards the proximal secretory portion; and from the periphery to the center of the gland lumen. The silk proteins are released from the secretory cells as a homogeneous substance that polymerizes in the lumen to form compact birefringent tactoids. Secondly, the water absorption from the lumen secretion, carried out by secretory and duct cells, promotes aggregation of the tactoids that form a spiral-shape filament with a zigzag pattern. This pattern is also the results of the silk compression in the gland lumen and represents a high concentration of macromolecularly well-oriented silk proteins.
Resumo:
Caste determination in Trigona spinipes Fabricius (Hymenoptera, Apidae, Meliponini) is trophogenic. Larvae that eat about 360 mu l of food become queens, while those who consume 36 mu l develop into workers. We studied the effect of larval nutrition on the number and length of ovarioles and on ovarian development in fifth instar larvae, white eyed, pink eyed and black-eyed pupae as well as newly emerged adults. All larvae have four ovarioles per ovary, while in queen pupae this number ranged from 8 to 15. Cyst formation, the cell death and other characteristics of ovary morphogenesis were the same regardless of the quantity of food consumed. These results are discussed in relation to caste differentiation in other bees.
Resumo:
Trigona hypogea, T. crassipes, and T. necrophaga are obligate necrophagous bees that differ from the majority of bees by using animal material instead of pollen as a protein resource. Since T. hypogea does not store protein in cerumen pots, it was thought that glandular secretions were its only larval protein source. This is in contrast to T. necrophaga which stores a yellowish proteinaceous jelly in the pots. Our results show that the larval food of T. hypogea has a higher protein content than the food stored in the pots and that it presents an electrophoretical protein pattern similar to that of the hypopharyngeal gland, indicating that workers add glandular secretions to the larval food while provisioning the brood cells. Thus, it can be suggested that T. hypogea has a provisioning behavior similar to other Meliponinae. The presence of several bands of proteins in the food stored in the pots shows that this species stores carrion mixed with honey in storage pots. Morphological data suggest that both larvae and adults make use of the same foodstuffs. These results also suggest that T. hypogea is more similar to other necrophagous species than it is to T. necrophaga (a more specialized bee).
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Ant predation of natural field populations of larval sugarcane borers, Diatraea saccharalis, was evaluated by using insecticidal check techniques, and through survivorship studies of artificial high-density infestations, in plantations in Brazil. Areas of ant suppression had higher levels of D. saccharalis than unsuppressed areas, although both types of areas normally had extremely low D. saccharalis populations. Artifical infestations of D. saccharalis yielded significantly lower larval survivorship in unsuppressed areas than in suppressed areas. Fire ants (Solenopsis spp.) were always the most abundant ant. This study has demonstrated that ants are important pest predators in Brazilian sugarcane fields.