915 resultados para Land use Management


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In genere, negli studi di vocazionalità delle colture, vengono presi in considerazione solo variabili ambientali pedo-climatiche. La coltivazione di una coltura comporta anche un impatto ambientale derivante dalle pratiche agronomiche ed il territorio può essere più o meno sensibile a questi impatti in base alla sua vulnerabilità. In questo studio si vuole sviluppare una metodologia per relazionare spazialmente l’impatto delle colture con le caratteristiche sito specifiche del territorio in modo da considerare anche questo aspetto nell’allocazione negli studi di vocazionalità. LCA è stato utilizzato per quantificare diversi impatti di alcune colture erbacee alimentari e da energia, relazionati a mappe di vulnerabilità costruite con l’utilizzo di GIS, attraverso il calcolo di coefficienti di rischio di allocazione per ogni combinazione coltura-area vulnerabile. Le colture energetiche sono state considerate come un uso alternativo del suolo per diminuire l’impatto ambientale. Il caso studio ha mostrato che l’allocazione delle colture può essere diversa in base al tipo e al numero di impatti considerati. Il risultato sono delle mappe in cui sono riportate le distribuzioni ottimali delle colture al fine di minimizzare gli impatti, rispetto a mais e grano, due colture alimentari importanti nell’area di studio. Le colture con l’impatto più alto dovrebbero essere coltivate nelle aree a vulnerabilità bassa, e viceversa. Se il rischio ambientale è la priorità, mais, colza, grano, girasole, e sorgo da fibra dovrebbero essere coltivate solo nelle aree a vulnerabilità bassa o moderata, mentre, le colture energetiche erbacee perenni, come il panico, potrebbero essere coltivate anche nelle aree a vulnerabilità alta, rappresentando cosi una opportunità per aumentare la sostenibilità di uso del suolo rurale. Lo strumento LCA-GIS inoltre, integrato con mappe di uso attuale del suolo, può aiutare a valutarne il suo grado di sostenibilità ambientale.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Landslide hazard and risk are growing as a consequence of climate change and demographic pressure. Landuse planning represents a powerful tool to manage this socio‐economic problem and build sustainable and landslide resilient communities. Landslide inventory maps are a cornerstone of landuse planning and, consequently, their quality assessment represents a burning issue. This work aimed to define the quality parameters of a landslide inventory and assess its spatial and temporal accuracy with regard to its possible applications to landuse planning. In this sense, I proceeded according to a two‐steps approach. An overall assessment of the accuracy of data geographic positioning was performed on four case study sites located in the Italian Northern Apennines. The quantification of the overall spatial and temporal accuracy, instead, focused on the Dorgola Valley (Province of Reggio Emilia). The assessment of spatial accuracy involved a comparison between remotely sensed and field survey data, as well as an innovative fuzzylike analysis of a multi‐temporal landslide inventory map. Conversely, long‐ and short‐term landslide temporal persistence was appraised over a period of 60 years with the aid of 18 remotely sensed image sets. These results were eventually compared with the current Territorial Plan for Provincial Coordination (PTCP) of the Province of Reggio Emilia. The outcome of this work suggested that geomorphologically detected and mapped landslides are a significant approximation of a more complex reality. In order to convey to the end‐users this intrinsic uncertainty, a new form of cartographic representation is needed. In this sense, a fuzzy raster landslide map may be an option. With regard to landuse planning, landslide inventory maps, if appropriately updated, confirmed to be essential decision‐support tools. This research, however, proved that their spatial and temporal uncertainty discourages any direct use as zoning maps, especially when zoning itself is associated to statutory or advisory regulations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Satellite image classification involves designing and developing efficient image classifiers. With satellite image data and image analysis methods multiplying rapidly, selecting the right mix of data sources and data analysis approaches has become critical to the generation of quality land-use maps. In this study, a new postprocessing information fusion algorithm for the extraction and representation of land-use information based on high-resolution satellite imagery is presented. This approach can produce land-use maps with sharp interregional boundaries and homogeneous regions. The proposed approach is conducted in five steps. First, a GIS layer - ATKIS data - was used to generate two coarse homogeneous regions, i.e. urban and rural areas. Second, a thematic (class) map was generated by use of a hybrid spectral classifier combining Gaussian Maximum Likelihood algorithm (GML) and ISODATA classifier. Third, a probabilistic relaxation algorithm was performed on the thematic map, resulting in a smoothed thematic map. Fourth, edge detection and edge thinning techniques were used to generate a contour map with pixel-width interclass boundaries. Fifth, the contour map was superimposed on the thematic map by use of a region-growing algorithm with the contour map and the smoothed thematic map as two constraints. For the operation of the proposed method, a software package is developed using programming language C. This software package comprises the GML algorithm, a probabilistic relaxation algorithm, TBL edge detector, an edge thresholding algorithm, a fast parallel thinning algorithm, and a region-growing information fusion algorithm. The county of Landau of the State Rheinland-Pfalz, Germany was selected as a test site. The high-resolution IRS-1C imagery was used as the principal input data.