973 resultados para LUNGS
Resumo:
Isolated cytostatic lung perfusion (ILP) is an attractive technique allowing delivery of a high-dose of cytostatic agents to the lungs while limiting systemic toxicity. In developing a rat model of ILP, we have analysed the effect of the route of tumour cell injection on the source of tumour vessels. Pulmonary sarcomas were established by injecting a sarcoma cell suspension either by the intravenous (i.v.) route or directly into the lung parenchyma. Ink perfusion through either pulmonary artery (PA) or bronchial arteries (BA) was performed and the characteristics of the tumour deposits defined. i.v. and direct injection methods induced pulmonary sarcoma nodules, with similar histological features. The intraparenchymal injection of tumour cells resulted in more reliable and reproducible tumour growth and was associated with a longer survival of the animals. i.v. injected tumours developed a PA-derived vascular tree whereas directly injected tumours developed a BA-derived vasculature.
Resumo:
Until recently, the airways were thought to be sterile unless infected; however, a shift towards molecular methods for the quantification and sequencing of bacterial DNA has revealed that the airways harbour a unique steady-state microbiota. This paradigm shift is changing the way that respiratory research is approached, with a clear need now to consider the effects of host-microorganism interactions in both healthy and diseased lungs. We propose that akin to recent discoveries in intestinal research, dysbiosis of the airway microbiota could underlie susceptibility to, and progression and chronicity of lung disease. In this Opinion article, we summarize current knowledge of the airway microbiota and outline how host-microorganism interactions in the lungs and other tissues might influence respiratory health and disease.
Resumo:
The viability of Ascaris lumbricoides eggs passed in the feces was evaluated after treatment of patients with one of the anti-helminthic drugs (thiabendazole, levamisole, cambendazole, pyrantel pamoate, mebendazole or praziquantel). For each drug, a group of 5 children was selected and their feces collected 24 h before treatment and 24, 48 and 72 h after drug administration, except for mebendazole, with the feces being collected throughout the period of treatment. After sedimentation, the total amount of eggs from each collection was transferred to tissue culture flasks containing 10 ml H2So4 O, 1N, with the addtion of 3 drops of a miconazol solution, and incubated at 28 graus centígrados, individually, for 80 days. The flasks wee maintained open and the culture were oxigenated daily by manual agitation. On the 80th day of culture, 20-days-old albino mice were inoculated with 3,200 embryonated eggs, per os. Larvae were recovered from their lungs and hearts, on the 8th day after infection, according to Baerman's method (Morais, 1948). Thiabendazole showed 100.0% ovicidal capacity as early as 48 after treatment. Inhibition of embrionary development was observed when thiabendazole was used. This drug also had an effect on the eggs infectivity when inoculated into normal mice. No significant effect on embrionary development was observed for the other drugs tested.
Resumo:
Background: Bronchopulmonary dysplasia (BPD) remains the leading cause of chronic pulmonary morbidity among preterm neonates. However, the exact pathophysiology is still unknown. Here we present the first results from a new model inteAbstracts, 25th International Workshop on Surfactant Replacement 400 Neonatology 2010;97:395-400 grating the most common risk factors for BPD (lung immaturity, inflammation, mechanical ventilation (MV), oxygen), which allows long-term outcome evaluation due to a non-traumatic intubation procedure. Objectives: To test the feasibility of a new rat model by investigating effects of MV, inflammation and oxygen applied to immature lungs after a ventilation-free interval. Methods: On day 4, 5, or 6 newborn rats were given an intraperitoneal injection of lipopolysaccharides to induce a systemic inflammation. 24 h later they were anesthetized, endotracheally intubated and ventilated for 8 h with 60% oxygen. After weaning of anesthesia and MV the newborn rats were extubated and returned to their mothers. Two days later they were killed and outcome measurements were performed (histology, quantitative RT-PCR) and compared to animals investigated directly after MV. Results: Directly after MV, histological signs of ventilator-induced lung injury were found. After 48 h, the first signs of early BPD were seen with delayed alveolar formation. Expression of inflammatory genes was only transiently increased. After 48 h genes involved in alveolarization, such as matrix metalloproteinase-9 and tropoelastin, showed a significant change of their expression. Conclusion: For the first time we can evaluate in a newborn rat model the effects of MV after a ventilation-free interval. This allows discrimination between immediate response genes and delayed changes of expression of more structural genes involved in alveolarization.
Resumo:
In C57Bl/6 strain mice vaccinated with radiation-attenuated cercariae of Schistosoma mansoni immune elimination of challenge parasites occurs in the lungs. Leococytes were recovered from the lungs of such mice by bronchoalveolar lavage and cultured in vitro with larval antigen; the profile of cytokines released was then analyzed. From 14 days after vaccination, BAL cultures contained infiltrating lymphocytes wich produced abundant quantitties of IFN-g and IL-3. Challenge of vaccinated mice resulted in a second influx of IFN-g nd IL-3- producing cells, earlier than after vaccination or in the appropriate contropls. Ablation studies revealed that CD4+ T cells were the source of IFN-g. The timing of cytokine production after vaccination, and challenge was coincident with the phases of macrophage activation previously reported. At no time could lymphocytes in BAL cultures to stimulated to proliferate with either larval Ag or mitogen, in contrast to splenocytes from the same mice. Furthermore, T cell growth factor activity was not detected in BAL cultures stimulated with Ag. We suggest that the lymphocytes recruited to the lungs are memory/effector cells, When Ag. released challenge schistosomula is presented to these cells, they respond by secreting cytokines wich mediate the formation of cellular aggregates around the parasites, blocking their onward migration.
Resumo:
To investigate whether respiratory acidosis modulates ventilator-induced lung injury (VILI), we perfused (constant flow) 21 isolated sets of normal rabbit lungs, ventilated them for 20 min (pressure controlled ventilation [PCV] = 15 cm H(2)O) (Baseline) with an inspired CO(2) fraction adjusted for the partial pressure of CO(2) in the perfusate (PCO(2) approximately equal to 40 mm Hg), and then randomized them into three groups. Group A (control: n = 7) was ventilated with PCV = 15 cm H(2)O for three consecutive 20-min periods (T1, T2, T3). In Group B (high PCV/normocapnia; n = 7), PCV was given at 20 (T1), 25 (T2), and 30 (T3) cm H(2)O. The targeted PCO(2) was 40 mm Hg in Groups A and B. Group C (high PCV/hypercapnia; n = 7) was ventilated in the same way as Group B, but the targeted PCO(2) was approximately equal to 70 to 100 mm Hg. The changes (from Baseline to T3) in weight gain (Delta WG: g) and in the ultrafiltration coefficient (Delta K(f) = gr/min/ cm H(2)O/100g) and the protein and hemoglobin concentrations in bronchoalveolar lavage fluid (BALF) were used to assess injury. Group B experienced a significantly greater Delta WG (14.85 +/- 5.49 [mean +/- SEM] g) and Delta K(f) (1.40 +/- 0.49 g/min/cm H(2)O/100 g) than did either Group A (Delta WG = 0.70 +/- 0.43; Delta K(f) = 0.01 +/- 0.03) or Group C (Delta WG = 5.27 +/- 2.03 g; Delta K(f) = 0.25 +/- 0.12 g/min/cm H(2)O/ 100 g). BALF protein and hemoglobin concentrations (g/L) were higher in Group B (11.98 +/- 3.78 g/L and 1.82 +/- 0.40 g/L, respectively) than in Group A (2.92 +/- 0.75 g/L and 0.38 +/- 0.15 g/L) or Group C (5.71 +/- 1.88 g/L and 1.19 +/- 0.32 g/L). We conclude that respiratory acidosis decreases the severity of VILI in this model.
Resumo:
Image quality in magnetic resonance imaging (MRI) is considerably affected by motion. Therefore, motion is one of the most common sources of artifacts in contemporary cardiovascular MRI. Such artifacts in turn may easily lead to misinterpretations in the images and a subsequent loss in diagnostic quality. Hence, there is considerable research interest in strategies that help to overcome these limitations at minimal cost in time, spatial resolution, temporal resolution, and signal-to-noise ratio. This review summarizes and discusses the three principal sources of motion: the beating heart, the breathing lungs, and bulk patient movement. This is followed by a comprehensive overview of commonly used compensation strategies for these different types of motion. Finally, a summary and an outlook are provided.
Resumo:
Mycobacterium tuberculosis preferentially resides in mononuclear phagocytes. The mechanisms by which mononuclear phagocytes keep M. tuberculosis in check or by which the microbe evades control to cause disease remain poorly understood. As an initial effort to delineate these mechanisms, we examined by immunostaining the phenotype of mononuclear phagocytes obtained from lungs of patients with active tuberculosis. From August 1994 to March 1995, consecutive patients who had an abnormal chest X-ray, no demostrable acid-fast bacilli in sputum specimens and required a diagnostic bronchoalveolar lavage (BAL) were enrolled. Of the 39 patients enrolled, 21 had microbiologically diagnosed tuberculosis. Thirteen of the 21 tuberculosis patients were either HIV seronegative (n = 12) or had no risk factor for HIV and constituted the tuberculosis group. For comparison, M. tuberculosis negative patients who had BAL samples taken during this time (n = 9) or normal healthy volunteers (n = 3) served as control group. Compared to the control group, the tuberculosis group had significantly higher proportion of cells expressing markers of young monocytes (UCHM1) and RFD7, a marker for phagocytic cells, and increased expression of HLA-DR, a marker of cell activation. In addition, tuberculosis group had significantly higher proportion of cells expressing dendritic cell marker (RFD1) and epithelioid cell marker (RFD9). These data suggest that despite recruitment of monocytes probably from the peripheral blood and local cell activation, host defense of the resident lung cells is insufficient to control M. tuberculosis.
Resumo:
Interleukin 5 (IL-5) is a critical cytokine for the maturation of eosinophil precursors to eosinophils in the bone marrow and those eosinophils then accumulate in the lungs during asthma. We have studied anti IL-5 antibodies on allergic responses in mice, guinea pigs and monkeys and are extending this experiment into humans with a humanized antibody. In a monkey model of pulmonary inflammation and airway hyperreactivity, we found that the TRFK-5 antibody blocked both responses for three months following a single dose of 0.3 mg/kg, i.v. This antibody also blocked lung eosinophilia in mice by inhibiting release from the bone marrow. To facilitate multiple dosing and to reduce immunogenicity in humans, we prepared Sch 55700, a humanized antibody against IL-5. Sch 55700 was also active against lung eosinophilia in allergic monkeys and mice and against pulmonary eosinophilia and airway hyperresponsiveness in guinea pigs. Furthermore, as opposed to steroids, Sch 55700 did not cause immunosuppression in guinea pigs. Studies with this antibody in humans will be critical to establishing the therapeutic potential of IL-5 inhibition.
Resumo:
In many helminth infected hosts the number of eosinophils increases dramatically, often without any concurrent increases in the number of other leukocytes, so that eosinophils become the dominant cell type. Many experimental investigations have shown that the eosinophilia is induced by interleukin-5 (IL-5) but its functional significance remains unclear. Mice genetically deficient in IL-5 (IL-5-/-) have been used to evaluate the functional consequences of the IL-5 dependent eosinophilia in helminth infected hosts. Host pathology and level of infection were determined in IL-5-/- and wild type mice infected with a range of species representative of each major group of helminths. The effects of IL-5 deficiency were very heterogeneous. Of the six species of helminth examined, IL-5 dependent immune responses had no detectable effect in infections with three species, namely the cestodes Mesocestoides corti and Hymenolepis diminuta and the trematode Fasciola hepatica. In contrast, IL-5 dependent immune responses were functionally important in mice infected with three species, notably all nematodes. Damage to the lungs caused by migrating larvae of Toxocara canis was reduced in IL-5-/- mice. Infections of the intestine by adult stages of either Strongyloides ratti or Heligmosomoides polygyrus were more severe in IL-5-/- mice. Adult intestinal nematodes were clearly deleteriously affected by IL-5 dependent processes since in its presence there were fewer worms which had reduced fecundity and longevity. The implications of these results for the viability of using inhibitors of IL-5 as a therapy for asthma are considered.
Resumo:
Eosinophils preferentially accumulate at sites of chronic allergic diseases such as bronchial asthma. The mechanisms by which selective eosinophil migration occurs are not fully understood. However, interactions of cell-surface adhesion molecules on the eosinophil with molecular counterligands on endothelial and epithelial cells, and on extracellular matrix proteins, are likely to be critical during the recruitment process. One possible mechanism for selective eosinophil recruitment involves the alpha4beta 1 (VLA-4) integrin which is not expressed on neutrophils. Correlations have been found between infiltration of eosinophils and endothelial expression of VCAM-1, the ligand for VLA-4, in the lungs of asthmatic individuals as well as in late phase reactions in the lungs, nose and skin. Epithelial and endothelial cells respond to the Th2-type cytokines IL-4 and IL-13 with selective de novo expression of VCAM-1, consistent with the possible role of VCAM-1/VLA-4 interactions in eosinophil influx during allergic inflammation. Both beta 1 and beta 2 integrins on eosinophils exist in a state of partial activation. For example, eosinophils can be maximally activated for adhesion to VCAM-1 or fibronectin after exposure to beta 1 integrin-activating antibodies or divalent cations, conditions that do not necessarily affect the total cell surface expression of beta 1 integrins. In contrast, cytokines like IL-5 prevent beta 1 integrin activation while promoting beta 2 integrin function. Furthermore, ligation of integrins can regulate the effector functions of the cell. For example, eosinophil adhesion via beta 1 and/or beta 2 integrins has been shown to alter a variety of functional responses including degranulation and apoptosis. Thus, integrins appear to be important in mediating eosinophil migration and activation in allergic inflammation. Strategies that interfere with these processes may prove to be useful for treatment of allergic diseases.
Neonatal dexamethasone induces premature microvascular maturation of the alveolar capillary network.
Resumo:
Postnatal glucocorticoid treatment of preterm infants was mimicked by treating newborn rats with dexamethasone (0.1-0.01 microg/g, days 1-4). This regimen has been shown to cause delayed alveolarization. Knowing that microvascular maturation (transformation of double- to single-layered capillary networks in alveolar septa) and septal thinning prevent further alveolarization, we measured septal maturation on electron photomicrographs in treated and control animals. In treated rats and before day 10, we observed a premature nonreversing microvascular maturation and a transient septal thinning, which both appeared focally. In vascular casts of both groups, we observed contacts between the two capillary layers of immature alveolar septa, which were predictive for capillary fusions. Studying serial electron microscopic sections of human lungs, we were able to confirm the postulated fusion process for the first time. We conclude that alveolar microvascular maturation indeed occurs by capillary fusion and that the dexamethasone-induced impairment of alveolarization is associated with focal premature capillary fusion.
Resumo:
Combustion-derived and manufactured nanoparticles (NPs) are known to provoke oxidative stress and inflammatory responses in human lung cells; therefore, they play an important role during the development of adverse health effects. As the lungs are composed of more than 40 different cell types, it is of particular interest to perform toxicological studies with co-cultures systems, rather than with monocultures of only one cell type, to gain a better understanding of complex cellular reactions upon exposure to toxic substances. Monocultures of A549 human epithelial lung cells, human monocyte-derived macrophages and monocyte-derived dendritic cells (MDDCs) as well as triple cell co-cultures consisting of all three cell types were exposed to combustion-derived NPs (diesel exhaust particles) and to manufactured NPs (titanium dioxide and single-walled carbon nanotubes). The penetration of particles into cells was analysed by transmission electron microscopy. The amount of intracellular reactive oxygen species (ROS), the total antioxidant capacity (TAC) and the production of tumour necrosis factor (TNF)-a and interleukin (IL)-8 were quantified. The results of the monocultures were summed with an adjustment for the number of each single cell type in the triple cell co-culture. All three particle types were found in all cell and culture types. The production of ROS was induced by all particle types in all cell cultures except in monocultures of MDDCs. The TAC and the (pro-)inflammatory reactions were not statistically significantly increased by particle exposure in any of the cell cultures. Interestingly, in the triple cell co-cultures, the TAC and IL-8 concentrations were lower and the TNF-a concentrations were higher than the expected values calculated from the monocultures. The interplay of different lung cell types seems to substantially modulate the oxidative stress and the inflammatory responses after NP exposure. [Authors]
Resumo:
Calomys callosus, Rengger 1830 (Rodentia, Cricetidae), a wild rodent found in Central Brazil, was studied to investigate its susceptibility to Toxoplasma gondii experimental infection and its humoral immune response against this protozoa. The electrophoretic profile of the serum proteins of C. callosus showed that IgG, which shows no affinity to Protein A, has higher cross reactivity with rat IgG than with IgG from other rodents. The susceptibility assay was performed by inoculation groups of animals with various suspensions of T. gondii tachyzoites from 102 to 106 parasites. All animals died between 3 and 9 days after infection and the kinetics of antibody synthesis was determined. Basically, they recognized predominantly the immunodominant antigen SAG-1 (P30). The immunohistochemistry assays revealed that the liver was the most heavily infected organ, followed by the spleen, lungs, intestine, brain and kidneys. It can be concluded that C. callosus is an excellent experimental model for acute phase of Toxoplasma infection
Resumo:
The distribution of free and liposomal doxorubicin (Liporubicin) administered by intravenous injection (IV) or isolated lung perfusion (ILP) was compared in normal and tumor tissues of sarcoma bearing rodent lungs. A single sarcomatous tumor was generated in the left lung of 35 Fischer rats, followed 10 days later by left-sided ILP (n=20) or IV drug administration (n=12), using 100 microg and 400 microg free or liposomal doxorubicin, respectively. The tumor and lung tissue drug concentration was measured by HPLC. Free doxorubicin administered by ILP resulted in a three-fold (100 microg) and 10-fold (400 microg) increase of the drug concentration in the tumor and normal lung tissue compared to IV administration. In contrast, ILP with Liporubicin resulted in a similar drug uptake in the tumor and lung tissue compared to IV injection. For both drug formulations and dosages, ILP resulted in a higher tumor to lung tissue drug ratio but also in a higher spatial heterogeneity of drug distribution within the lung compared to IV administration. ILP resulted in a higher tumor to lung tissue drug ratio and in a more heterogeneous drug distribution within the lung compared to IV drug administration.