975 resultados para LCME site visit
Resumo:
This research is designed to develop a new technique for site characterization in a three-dimensional domain. Site characterization is a fundamental task in geotechnical engineering practice, as well as a very challenging process, with the ultimate goal of estimating soil properties based on limited tests at any half-space subsurface point in a site.In this research, the sandy site at the Texas A&M University's National Geotechnical Experimentation Site is selected as an example to develop the new technique for site characterization, which is based on Artificial Neural Networks (ANN) technology. In this study, a sequential approach is used to demonstrate the applicability of ANN to site characterization. To verify its robustness, the proposed new technique is compared with other commonly used approaches for site characterization. In addition, an artificial site is created, wherein soil property values at any half-space point are assumed, and thus the predicted values can compare directly with their corresponding actual values, as a means of validation. Since the three-dimensional model has the capability of estimating the soil property at any location in a site, it could have many potential applications, especially in such case, wherein the soil properties within a zone are of interest rather than at a single point. Examples of soil properties of zonal interest include soil type classification and liquefaction potential evaluation. In this regard, the present study also addresses this type of applications based on a site located in Taiwan, which experienced liquefaction during the 1999 Chi-Chi, Taiwan, Earthquake.
Resumo:
Experimental studies have observed significant changes in both structure and function of lysozyme (and other proteins) on addition of a small amount of dimethyl sulfoxide (DMSO) in aqueous solution. Our atomistic molecular dynamic simulations of lysozyme in water-DMSO reveal the following sequence of changes on increasing DMSO concentration. (i) At the initial stage (around 5% DMSO concentration) protein's conformational flexibility gets markedly suppressed. From study of radial distribution functions, we attribute this to the preferential solvation of exposed protein hydrophobic residues by the methyl groups of DMSO. (ii) In the next stage (10-15% DMSO concentration range), lysozome partially unfolds accompanied by an increase both in fluctuation and in exposed protein surface area. (iii) Between 15-20% concentration ranges, both conformational fluctuation and solvent accessible protein surface area suddenly decrease again indicating the formation of an intermediate collapse state. These results are in good agreement with near-UV circular dichroism (CD) and fluorescence studies. We explain this apparently surprising behavior in terms of a structural transformation which involves clustering among the methyl groups of DMSO. (iv) Beyond 20% concentration of DMSO, the protein starts its final sojourn towards the unfolding state with further increase in conformational fluctuation and loss in native contacts. Most importantly, analysis of contact map and fluctuation near the active site reveal that both partial unfolding and conformational fluctuations are centered mostly on the hydrophobic core of active site of lysozyme. Our results could offer a general explanation and universal picture of the anomalous behavior of protein structure-function observed in the presence of cosolvents (DMSO, ethanol, tertiary butyl alcohol, dioxane) at their low concentrations. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.3694268]
Resumo:
A computational pipeline PocketAnnotate for functional annotation of proteins at the level of binding sites has been proposed in this study. The pipeline integrates three in-house algorithms for site-based function annotation: PocketDepth, for prediction of binding sites in protein structures; PocketMatch, for rapid comparison of binding sites and PocketAlign, to obtain detailed alignment between pair of binding sites. A novel scheme has been developed to rapidly generate a database of non-redundant binding sites. For a given input protein structure, putative ligand-binding sites are identified, matched in real time against the database and the query substructure aligned with the promising hits, to obtain a set of possible ligands that the given protein could bind to. The input can be either whole protein structures or merely the substructures corresponding to possible binding sites. Structure-based function annotation at the level of binding sites thus achieved could prove very useful for cases where no obvious functional inference can be obtained based purely on sequence or fold-level analyses. An attempt has also been made to analyse proteins of no known function from Protein Data Bank. PocketAnnotate would be a valuable tool for the scientific community and contribute towards structure-based functional inference. The web server can be freely accessed at http://proline.biochem.iisc.ernet.in/pocketannotate/.
Resumo:
A mixed-metal metal-organic framework (MOF) compound NiMn2{C6H3(COO)(3)}(2)], I, is prepared hydrothermally by replacing one of the octahedral Mn2+ ions in Mn-3{C6H3(COO)(3)}(2)] by Ni2+ ions. Magnetic studies on I suggest antiferromagnetic interactions with weak canted antiferromagnetism below 8 K. On heating in flowing air I transforms to NiMn2O4 spinel at low temperature (T < 400 degrees C). The thermal decomposition of I at different temperatures results in NiMn2O4 with particle sizes in the nano regime. The nanoparticle nature of NiMn2O4 was confirmed using PXRD and TEM studies. Magnetic studies on the nanoparticles of NiMn2O4 indicate ferrimagnetism. The transition temperature of NiMn2O4 nanoparticles exhibits a direct correlation with the particle size. This study highlights the usefulness of MOF compound as a single-source precursor for the preparation of important ceramic oxides with better control on the stoichiometry and particle size.
Resumo:
Guanylyl cyclase C (GC-C) is a multidomain, membrane-associated receptor guanylyl cyclase. GC-C is primarily expressed in the gastrointestinal tract, where it mediates fluid-ion homeostasis, intestinal inflammation, and cell proliferation in a cGMP-dependent manner, following activation by its ligands guanylin, uroguanylin, or the heat-stable enterotoxin peptide (ST). GC-C is also expressed in neurons, where it plays a role in satiation and attention deficiency/hyperactive behavior. GC-C is glycosylated in the extracellular domain, and differentially glycosylated forms that are resident in the endoplasmic reticulum (130 kDa) and the plasma membrane (145 kDa) bind the ST peptide with equal affinity. When glycosylation of human GC-C was prevented, either by pharmacological intervention or by mutation of all of the 10 predicted glycosylation sites, ST binding and surface localization was abolished. Systematic mutagenesis of each of the 10 sites of glycosylation in GC-C, either singly or in combination, identified two sites that were critical for ligand binding and two that regulated ST-mediated activation. We also show that GC-C is the first identified receptor client of the lectin chaperone vesicular integral membrane protein, VIP36. Interaction with VIP36 is dependent on glycosylation at the same sites that allow GC-C to fold and bind ligand. Because glycosylation of proteins is altered in many diseases and in a tissue-dependent manner, the activity and/or glycan-mediated interactions of GC-C may have a crucial role to play in its functions in different cell types.
Resumo:
Influenza virus evades host immunity through antigenic drift and shift, and continues to circulate in the human population causing periodic outbreaks including the recent 2009 pandemic. A large segment of the population was potentially susceptible to this novel strain of virus. Historically, monoclonal antibodies (MAbs) have been fundamental tools for diagnosis and epitope mapping of influenza viruses and their importance as an alternate treatment option is also being realized. The current study describes isolation of a high affinity (K-D = 2.1 +/- 0.4 pM) murine MAb, MA2077 that binds specifically to the hemagglutinin (HA) surface glycoprotein of the pandemic virus. The antibody neutralized the 2009 pandemic H1N1 virus in an in vitro microneutralization assay (IC50 = 0.08 mu g/ml). MA2077 also showed hemagglutination inhibition activity (HI titre of 0.50 mu g/ml) against the pandemic virus. In a competition ELISA, MA2077 competed with the binding site of the human MAb, 2D1 (isolated from a survivor of the 1918 Spanish flu pandemic) on pandemic H1N1 HA. Epitope mapping studies using yeast cell-surface display of a stable HA1 fragment, wherein `Sa' and `Sb' sites were independently mutated, localized the binding site of MA2077 within the `Sa' antigenic site. These studies will facilitate our understanding of antigen antibody interaction in the context of neutralization of the pandemic influenza virus.
Resumo:
Subsurface lithology and seismic site classification of Lucknow urban center located in the central part of the Indo-Gangetic Basin (IGB) are presented based on detailed shallow subsurface investigations and borehole analysis. These are done by carrying out 47 seismic surface wave tests using multichannel analysis of surface waves (MASW) and 23 boreholes drilled up to 30 m with standard penetration test (SPT) N values. Subsurface lithology profiles drawn from the drilled boreholes show low- to medium-compressibility clay and silty to poorly graded sand available till depth of 30 m. In addition, deeper boreholes (depth >150 m) were collected from the Lucknow Jal Nigam (Water Corporation), Government of Uttar Pradesh to understand deeper subsoil stratification. Deeper boreholes in this paper refer to those with depth over 150 m. These reports show the presence of clay mix with sand and Kankar at some locations till a depth of 150 m, followed by layers of sand, clay, and Kankar up to 400 m. Based on the available details, shallow and deeper cross-sections through Lucknow are presented. Shear wave velocity (SWV) and N-SPT values were measured for the study area using MASW and SPT testing. Measured SWV and N-SPT values for the same locations were found to be comparable. These values were used to estimate 30 m average values of N-SPT (N-30) and SWV (V-s(30)) for seismic site classification of the study area as per the National Earthquake Hazards Reduction Program (NEHRP) soil classification system. Based on the NEHRP classification, the entire study area is classified into site class C and D based on V-s(30) and site class D and E based on N-30. The issue of larger amplification during future seismic events is highlighted for a major part of the study area which comes under site class D and E. Also, the mismatch of site classes based on N-30 and V-s(30) raises the question of the suitability of the NEHRP classification system for the study region. Further, 17 sets of SPT and SWV data are used to develop a correlation between N-SPT and SWV. This represents a first attempt of seismic site classification and correlation between N-SPT and SWV in the Indo-Gangetic Basin.
Resumo:
Seismic site classifications are used to represent site effects for estimating hazard parameters (response spectral ordinates) at the soil surface. Seismic site classifications have generally been carried out using average shear wave velocity and/or standard penetration test n-values of top 30-m soil layers, according to the recommendations of the National Earthquake Hazards Reduction Program (NEHRP) or the International Building Code (IBC). The site classification system in the NEHRP and the IBC is based on the studies carried out in the United States where soil layers extend up to several hundred meters before reaching any distinct soil-bedrock interface and may not be directly applicable to other regions, especially in regions having shallow geological deposits. This paper investigates the influence of rock depth on site classes based on the recommendations of the NEHRP and the IBC. For this study, soil sites having a wide range of average shear wave velocities (or standard penetration test n-values) have been collected from different parts of Australia, China, and India. Shear wave velocities of rock layers underneath soil layers have also been collected at depths from a few meters to 180 m. It is shown that a site classification system based on the top 30-m soil layers often represents stiffer site classes for soil sites having shallow rock depths (rock depths less than 25 m from the soil surface). A new site classification system based on average soil thickness up to engineering bedrock has been proposed herein, which is considered more representative for soil sites in shallow bedrock regions. It has been observed that response spectral ordinates, amplification factors, and site periods estimated using one-dimensional shear wave analysis considering the depth of engineering bedrock are different from those obtained considering top 30-m soil layers.
Resumo:
Accidental spills and improper disposal of industrial effluent/sludge containing heavy metals onto the open land or into subsurface result in soil and water contamination. Detailed investigations are carried out to identify the source of contamination of heavy metals in an industrial suburb near Bangalore in India. Detailed investigation of ground water and subsurface soil analysis for various heavy metals has been carried out. Ground water samples were collected in the entire area through the cluster of borewells. Subsurface soil samples were collected from near borewells which were found to contain heavy metals. Water samples and soils samples (after acid digestion) were analysed as per APHO-standard method of analysis. While the results of Zn, Ni and Cd showed that they are within allowable limits in the soil, the ground water and soils in the site have concentration of Cr+6 far exceeding the allowable limits (up to 832 mg/kg). Considering the topography of the area, ground water movement and results of chromium concentration in the borewells and subsurface it was possible to identify the origin, zone of contamination and the migration path of Cr+6. The results indicated that the predominant mechanism of migration of Cr+6 is by diffusion.
Resumo:
Impact of global warming on daily rainfall is examined using atmospheric variables from five General Circulation Models (GCMs) and a stochastic downscaling model. Daily rainfall at eleven raingauges over Malaprabha catchment of India and National Center for Environmental Prediction (NCEP) reanalysis data at grid points over the catchment for a continuous time period 1971-2000 (current climate) are used to calibrate the downscaling model. The downscaled rainfall simulations obtained using GCM atmospheric variables corresponding to the IPCC-SRES (Intergovernmental Panel for Climate Change - Special Report on Emission Scenarios) A2 emission scenario for the same period are used to validate the results. Following this, future downscaled rainfall projections are constructed and examined for two 20 year time slices viz. 2055 (i.e. 2046-2065) and 2090 (i.e. 2081-2100). The model results show reasonable skill in simulating the rainfall over the study region for the current climate. The downscaled rainfall projections indicate no significant changes in the rainfall regime in this catchment in the future. More specifically, 2% decrease by 2055 and 5% decrease by 2090 in monsoon (HAS) rainfall compared to the current climate (1971-2000) under global warming conditions are noticed. Also, pre-monsoon (JFMAM) and post-monsoon (OND) rainfall is projected to increase respectively, by 2% in 2055 and 6% in 2090 and, 2% in 2055 and 12% in 2090, over the region. On annual basis slight decreases of 1% and 2% are noted for 2055 and 2090, respectively.
Resumo:
The accuracy of pairing of the anticodon of the initiator tRNA (tRNA(fMet)) and the initiation codon of an mRNA, in the ribosomal P-site, is crucial for determining the translational reading frame. However, a direct role of any ribosomal element(s) in scrutinizing this pairing is unknown. The P-site elements, m(2)G966 (methylated by RsmD), m(5)C967 (methylated by RsmB) and the C-terminal tail of the protein S9 lie in the vicinity of tRNA(fMet). We investigated the role of these elements in initiation from various codons, namely, AUG, GUG, UUG, CUG, AUA, AUU, AUC and ACG with tRNA(CAU)(fmet) (tRNA(fMet) with CAU anticodon); CAC and CAU with tRNA(GUG)(fme); UAG with tRNA(GAU)(fMet) using in vivo and computational methods. Although RsmB deficiency did not impact initiation from most codons, RsmD deficiency increased initiation from AUA, CAC and CAU (2- to 3.6-fold). Deletion of the S9 C-terminal tail resulted in poorer initiation from UUG, GUG and CUG, but in increased initiation from CAC, CAU and UAC codons (up to 4-fold). Also, the S9 tail suppressed initiation with tRNA(CAU)(fMet)lacking the 3GC base pairs in the anticodon stem. These observations suggest distinctive roles of 966/967 methylations and the S9 tail in initiation.
Resumo:
The objective of the paper is to estimate Safe Shutdown Earthquake (SSE) and Operating/Design Basis Earthquake (OBE/DBE) for the Nuclear Power Plant (NPP) site located at Kalpakkam, Tamil Nadu, India. The NPP is located at 12.558 degrees N, 80.175 degrees E and a 500 km circular area around NPP site is considered as `seismic study area' based on past regional earthquake damage distribution. The geology, seismicity and seismotectonics of the study area are studied and the seismotectonic map is prepared showing the seismic sources and the past earthquakes. Earthquake data gathered from many literatures are homogenized and declustered to form a complete earthquake catalogue for the seismic study area. The conventional maximum magnitude of each source is estimated considering the maximum observed magnitude (M-max(obs)) and/or the addition of 0.3 to 0.5 to M-max(obs). In this study maximum earthquake magnitude has been estimated by establishing a region's rupture character based on source length and associated M-max(obs). A final source-specific M-max is selected from the three M-max values by following the logical criteria. To estimate hazard at the NPP site, ten Ground-Motion Prediction Equations (GMPEs) valid for the study area are considered. These GMPEs are ranked based on Log-Likelihood (LLH) values. Top five GMPEs are considered to estimate the peak ground acceleration (PGA) for the site. Maximum PGA is obtained from three faults and named as vulnerable sources to decide the magnitudes of OBE and SSE. The average and normalized site specific response spectrum is prepared considering three vulnerable sources and further used to establish site-specific design spectrum at NPP site.
Resumo:
Here, we have discovered CXI-benzo-84 as a potential anticancer agent from a library of benzimidazole derivatives using cell based screening strategy. CXI-benzo-84 inhibited cell cycle progression in metaphase stage of mitosis and accumulated spindle assembly checkpoint proteins Mad2 and BubR1 on kinetochores, which subsequently activated apoptotic cell death in cancer cells. CXI-benzo-84 depolymerized both interphase and mitotic microtubules, perturbed EB1 binding to microtubules and inhibited the assembly and GTPase activity of tubulin in vitro. CXI-benzo-84 bound to tubulin at a single binding site with a dissociation constant of 1.2 +/- 0.2 mu M. Competition experiments and molecular docking suggested that CXI-benzo-84 binds to tubulin at the colchicine-site. Further, computational analysis provided a significant insight on the binding site of CXI-benzo-84 on tubulin. In addition to its potential use in cancer chemotherapy, CXI-benzo-84 may also be useful to screen colchicine-site agents and to understand the colchicine binding site on tubulin. (C) 2013 Elsevier Inc. All rights reserved.
Resumo:
The ribosomal P-site hosts the peptidyl-tRNAs during translation elongation. Which P-site elements support these tRNA species to maintain codon-anticodon interactions has remained unclear. We investigated the effects of P-site features of methylations of G966, C967, and the conserved C-terminal tail sequence of Ser, Lys, and Arg (SKR) of the S9 ribosomal protein in maintenance of the translational reading frame of an mRNA. We generated Escherichia coli strains deleted for the SKR sequence in S9 ribosomal protein, RsmB (which methylates C967), and RsmD (which methylates G966) and used them to translate LacZ from its +1 and -1 out-of-frame constructs. We show that the S9 SKR tail prevents both the +1 and -1 frameshifts and plays a general role in holding the P-site tRNA/peptidyl-tRNA in place. In contrast, the G966 and C967 methylations did not make a direct contribution to the maintenance of the translational frame of an mRNA. However, deletion of rsmB in the S9 Delta 3 background caused significantly increased -1 frameshifting at 37 degrees C. Interestingly, the effects of the deficiency of C967 methylation were annulled when the E. coli strain was grown at 30 degrees C, supporting its context-dependent role.