970 resultados para LANTHANUM
Resumo:
The influence of muffin-tin approximation on energy band gap was studied using LMTO-ASA (Linear Muffin-Tin Orbital-Atomic Sphere Approximation) approach. Since the diverse data are available for LaX(X=N, P, As, Sb), they are presented in our research as an example in order to test the reliability of our results. Four groups of muffin-tin radii were chosen, they were the fitted muffin-tin radii based on the optical properties of the crystals (the first), 1 : 1 for La : X(the second), 1.5 : 1 for La : X(the third), and a group of radii derived by making the charge in the interstitial space to be zero(the fourth). The results show that the fitted muffin-tin radii (the first group) give the best results compared with experimental values, and the predicted energy band gaps are very sensitive to the choice of muffin-tin radius in comparison with the other groups. The second and the third delivered results somewhere in between, while the fourth provided the worst results compared with the other groups. For the same crystal, with the increase of muffin-tin radius of lanthanum, the calculated energy band gaps decreased, going from semi-conductor to semimetal. This again clearly indicated the sensitivity of energy band structure on muffin-tin approximation.
Resumo:
LaC3n+ (n = 0, 1, 2) clusters have been studied using B3LYP (Becke 3-parameter-Lee-Yang-Parr) density functional method. The basis set is Dunning/ Huzinaga valence double zeta for carbon and [2s2p2d] for lanthanum, denoted LANL1DZ. Four isomers are presented for each cluster; two of them are edge binding isomers with C-2 upsilon symmetry, the other two are Linear chains with C-infinity upsilon symmetry. Meanwhile, two spin states for each isomer, that is, singlet and triplet for LaC3+, doublet and quartet for LaC3 and LaC32+, respectively, are also considered. Geometries, vibrational frequencies, infrared intensities, and other quantities are reported and discussed. The results indicate that at some spin states; the C-2 upsilon symmetry isomers are the dominant structures, while for the other spin states, linear isomers are energetically favored. (C) 1998 John Wiley & Sons, Inc.
Resumo:
The energies and geometries of C-9 and LaC9+ clusters were calculated at HF, MP2 and DFT levels. For C-9, all theoretical levels show that the linear chain is the most stable structure. For LaC9+, two isomers were considered. In the first case La has two single bonds (A), while it forms a double bond in the second (B). Our results showed that in HF calculation, B is marginally more stable than A, while for MP2 and DFT, A is favored. Our results also revealed that there is not enough space for C-9 ring to accommodate lanthanum. Our conclusion agrees well with experiment.
Resumo:
Following intraperitoneal injection of lanthanum and terbium chloride and their complexes of diethyltriaminopentagacetic acid (DTPA) to adult mice with a dose of 0.28 mmol/kg body weight/day for three days. The activities of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) and the content of lipid end product, malonaldehyde (MDA) in the mice livers have been assayed respectively. The results show that the activity of SOD was increased and the content of MDA was reduced for LaCl3 treated mice and the two targets were not changed for TbCl3, but the activity of GSH-Px was reduced markedly for both LaCl3 and TbCl3 while the above three targets were not changed for La-DTPA and Tb-DTPA complexes.
Resumo:
A new non-cyclic ligand, tris(4-carboxy-3-oxabutyl) amine (H3L . HCl) and its lanthanum(III) complex have been prepared and their crystal structures determined. In the lanthanum(III) complex the metal ion is coordinated to one nitrogen atom, three ether o
Resumo:
The composition and structures of Li-Ti-La mixed oxides as well as their catalytic activity for methane oxidative coupling have been studied by means of XRD XPS, IR, SEM and so on. The results indicate that by changing x value in Li-La1-xTixO2 oxides phas
Resumo:
The effect of Li content in a series of multicomponent oxides LixLa0.5Ti0.5 For methane oxidative coupling has been studied. The catalytic activities of LiLa0.5Ti0.5 catalyst before and after washing with boiling water have been compared. The surface and
Resumo:
A study has been made of the crystallization behavior of polypropylene (PP) filled with rare earth oxides under isothermal conditions. These rare earth oxides include lanthanum oxide (La2O3), yttrium oxide (Y2O3), and a mixture of rare earth oxides containing 70% Y2O3 (Y2O3-0.70). A differential scanning calorimeter was used to monitor the energetics of the crystallization process from the melt. During isothermal crystallization, dependence of the relative degree of crystallinity on time was described by the Avrami equation. It has been shown that the addition of any of the three rare earth oxides causes a considerable increase in the overall crystallization rate of PP but does not influence the mechanism of nucleation and growth of the PP crystals. The analysis of kinetic data according to nucleation theories shows that the increase in crystallization rate of PP in the composites is due to the decrease in surface energy of the extremity surfaces. The relative contents of the beta-form in the composites are somewhat higher than that in the plain PP. However, the contents of the beta-form in the plain PP and the composites are all very low relative to those of the alpha-form and the influence of the formation of the beta-form on the crystallization kinetics can be neglected.
Resumo:
The reaction of ErCl3 with one equivalent of C5H9C5H4Na generates the complex {[(C5H9C5H4)Er(THF)]2(mu2-Cl)3(mu3-Cl)2Na(THF)2}.THF, which crystallizes from hexane/THF. The X-ray crystal structure determination shows that each erbium is surrounded by one C5H9C5H4 ligand, two mu3-Cl, two mu2-Cl and one THF in a distorted octahedral arrangement.
Resumo:
Using the constant addition technique, the coprecipitation of lanthanum, gadolinium, and lutetium with aragonite in seawater was experimentally investigated at 25 degrees C. Their concentrations in aragonite overgrowths were determined by inductive coupled plasma mass spectrometer. All these lanthanides were strongly enriched in aragonite overgrowths. The amount of lanthanum, gadolinium, and lutetium incorporated into aragonite accounted for 57%-99%, 50%-89%, and 40%-91% of their initial total amount, respectively. With the increase of aragonite precipitation rate, more lanthanides were incorporated into aragonite while their relative fraction in aragonite overgrowths decreased consistently. It indicated that the coprecipitation of lanthanides with aragonite was controlled by the kinetics of aragonite precipitation.
Resumo:
The effects of La3+ on the antioxidant enzyme activities and the relative indices of cellular damage in cucumber seedling leaves were studied. When cucumber seedlings were treated with low concentrations of LaCl3 (0.002 and 0.02 mM), peroxidase (PO) activity increased, and catalase (CAT) activity was similar to that of control leaves at 0.002 mM La3+ and increased at 0.02 mM La3+, whereas superoxide dismutase (SOD) activity did not change significantly. The increase in the contents of chlorophyll (including chlorophylls a and b), carotenoids in parallel with the decrease in the level of malondialdehyde (MDA) suggested that low concentration of La3+ promoted plant growth. However, except the increase in SOD activity at 2 mM La3+, CAT and PO activities and the contents of pigments decreased at high concentrations of La3+ (0.2 and 2 mM), leading to the increase of MDA content and the inhibition of plant growth. It is suggested that lanthanum ion is involved in the regulation of active oxygen-scavenging enzyme activities during plant growth.
Resumo:
The addition of reducible metal oxides as promoters shows a positive effect on the catalytic behavior of lanthanum vanadate (LaVO4). A C3H6 yield increase of 6.5% is observed at 500 degreesC on molybdenum-promoted LaVO4, which can be attributed to the change of the redox properties, the blocking of the strong oxidation sites of the catalysts and to an increase of the accessibility of the labile oxygen toward the reactant. The influence of the catalyst preparation method and of the Mo loading as well as the additional promoting effect of CO2 in the gas feed was also examined.
Resumo:
A Cu-Zn-Al methanol catalyst combined with HZSM-5 was used for dimethyl ether (DME) synthesis from a syngas containing nitrogen, which was produced by air-partial oxidation of methane (air-POM). Air-POM occurred at 850 degreesC, 0.8 MPa, CH4/air/H2O/CO2 ratio of 1/2.4/0.8/0.4 over a Ni-based catalyst modified by magnesia and lanthanum oxide with 96% CH4 conversion and constantly gave syngas with a H-2/CO ratio of 2/1 during a period of 450 h. The obtained N-2-containing syngas was used directly for DME synthesis. About 90% CO per-pass conversion, 78% DME selectivity and 70% DME yield could be achieved during 450 h stability testing under the pressure of 5.0 MPa. the temperature of 240 degreesC and the space velocity of 1000 h(-1). (C) 2002 Elsevier Science B. V. All rights reserved.
Resumo:
A series of nano-sized Ni/Al2O3 and Ni/La-Al2O3 catalysts that possess high activities for NH3 decomposition have been successfully synthesized by a coprecipitation method. The catalytic performance was investigated under the atmospheric conditions and a significant enhancement in the activity after the introduction of La was observed. Aiming to study the influence of La promoter on the physicochemical properties, we characterized the catalysts by N-2 adsorption/desorption, XRD, H-2-TPR, chemisorption and TEM techniques. Physisorption results suggested a high specific surface area and XRD spectra showed that nickel particles are in a highly dispersed state. A combination of XRD, TEM and chemisorption showed that Ni-0 particles with the average size lower, than 5.0 nm are always obtained even though the Ni loading ranged widely from 4 to 63 %. Compared with the Ni/Al2O3 catalysts, the Ni/La-Al2O3 ones with an appropriate amount of promoter enjoy a more open mesoporous structure and higher dispersion of Ni. Reduction kinetic studies of prepared catalysts were investigated by temperature-programmed reduction (TPR) method and the fact that La additive partially destroyed the metastable Ni-Al mixed oxide phase was detailed. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Ba0.5Sr0.5TiO3 (BST) thin-film capacitor structures with various thicknesses, (50-1200 nm) and different strain conditions (on lanthanum strontium cobalt oxide La0.5Sr0.5CoO3 and strontium ruthenate SrRuO3 buffer layers) were made using pulsed laser deposition, and characterized by x-ray diffraction. The out-of-plane lattice parameter was followed as a function of temperature within the 100-300 K temperature interval. The phase sequence (cubic-tetragonal-orthorhombic-rhombohedral) known to exist in the bulk analog is shown to be strongly affected by both the stress conditions imposed by the buffer layer and the thickness of the BST film itself. Thus, no phase transition was found for the in-plane compressed BST films. On the stress-free BST films, on the contrary, more phase transitions were observed. It appeared that the complexity of structural phase transitions increased as the film thickness in this system was reduced.