833 resultados para KNEE OSTEOARTHRITIS
Resumo:
We retrieved synovial tissue and fluid samples from patients undergoing primary total hip replacement (THR) (n 15), revision of aseptically loose THR (n 12), primary total knee replacement (TKR) (n 13) and revision of aseptically loose TKR (n 6). Several histological parameters were assessed on a relative scale of 1-4. Primary TJRs were clinically evaluated for degree of osteoarthrosis. Revision TJRs were assessed for migration of the implant, gross loosening and the degree of radiolucency. Cytokine levels in synovial fluid were determined with ELISA.
Resumo:
To determine the quality of life of elderly patients with osteoarthritis (OA) compared with that of their peers with no chronic illnesses and to investigate the associations between analgesic use and quality of life.
Resumo:
BACKGROUND: This study investigated the effect of socioeconomic deprivation on preoperative disease and outcome following unicompartmental knee replacement (UKR).
METHODS: 307 Oxford UKRs implanted between 2008 and 2013 under the care of one surgeon using the same surgical technique were analysed. Deprivation was quantified using the Northern Ireland Multiple Deprivation Measure. Preoperative disease severity and postoperative outcome were measured using the Oxford Knee Score (OKS).
RESULTS: There was no difference in preoperative OKS between deprivation groups. Preoperative knee range of motion (ROM) was significantly reduced in more deprived patients with 10° less ROM than least deprived patients. Postoperatively there was no difference in OKS improvement between deprivation groups (p=0.46), with improvements of 19.5 and 21.0 units in the most and least deprived groups respectively. There was no significant association between deprivation and OKS improvement on unadjusted or adjusted analysis. Preoperative OKS, Short Form 12 mental component score and length of stay were significant independent predictors of OKS improvement. A significantly lower proportion of the most deprived group (15%) reported being able to walk an unlimited distance compared to the least deprived group (41%) one year postoperatively.
CONCLUSION: More deprived patients can achieve similar improvements in OKS to less deprived patients following UKR.
LEVEL OF EVIDENCE: 2b - retrospective cohort study of prognosis.
Resumo:
The knee adduction moment (KAM) during gait has been proposed as an indirect measure of dynamic knee joint loading and has been reported to be higher in obese children [1, 2]. The KAM is primarily calculated from the resultant ground reaction force (GRF) and the lever arm length, both of which can be manipulated through weight-loss or medical interventions [1]. However, there is little data on the relationships between the mechanical, anthropometric and gait contributors to the KAM during paediatric gait. The objectives of the study were to examine the associations with the first (1st) and second (2nd) peak KAM (pKAM) and: (1) centre of pressure (CoP), KAM lever arm length, vertical and mediolateral ground reaction forces (GRF) and, (2) fat mass, height, step width, foot rotation, knee rotation and walking velocity.
Resumo:
Introdução: A dor no joelho apresenta uma etiologia multifatorial, sendo a idade um fator de risco importante. A dor no joelho poderá estar relacionada com alterações na propriocetividade do joelho. Objetivo (s): Comparar a influência dor unilateral com bilateral do joelho na incapacidade e proprioceção em adultos mais velhos. Métodos: Estudo transversal com uma amostra de 11 indivíduos com dor no joelho, divididos em grupo com dor unilateral (GDU=6) e grupo com dor bilateral (GDB=5). Utilizou-se, a Knee injury and Osteoarthritis Outcome Score (KOOS) para analisar a dor, rigidez e outros sintomas, atividades de vida diária, desportivas e de lazer e qualidade de vida. Foi medida a sensação de posição articular passiva e ativa, bem como a sensação de discriminação de carga. Foram utilizados os testes de Mann-Whitney e de correlação de Spearman, com um nível de significância de 0,05. Resultados: Nas diferentes dimensões da KOOS apesar de não se ter verificado diferenças significativas entre os grupos, o GDU apresenta scores menores, que traduzem uma maior incapacidade. Na sensação de posição articular e na sensação de discriminação de carga não se verificaram diferenças significativas entre os grupos. Conclusão: A dor no joelho ser unilateral ou bilateral não influencia nem a incapacidade nem a proprioceção nos adultos mais velhos.
Resumo:
Background Mobilization with movement (MWM) has been shown to reduce pain, increase range of motion (ROM) and physical function in a range of different musculoskeletal disorders. Despite this evidence, there is a lack of studies evaluating the effects of MWM for hip osteoarthritis (OA). Objectives To determine the immediate effects of MWM on pain, ROM and functional performance in patients with hip OA. Design Randomized controlled trial with immediate follow-up. Method Forty consenting patients (mean age 78 ± 6 years; 54% female) satisfied the eligibility criteria. All participants completed the study. Two forms of MWM techniques (n = 20) or a simulated MWM (sham) (n = 20) were applied. Primary outcomes: pain recorded by numerical rating scale (NRS). Secondary outcomes: hip flexion and internal rotation ROM, and physical performance (timed up and go, sit to stand, and 40 m self placed walk test) were assessed before and after the intervention. Results For the MWM group, pain decreased by 2 points on the NRS, hip flexion increased by 12.2°, internal rotation by 4.4°, and functional tests were also improved with clinically relevant effects following the MWM. There were no significant changes in the sham group for any outcome variable. Conclusions Pain, hip flexion ROM and physical performance immediately improved after the application of MWM in elderly patients suffering hip OA. The observed immediate changes were of clinical relevance. Future studies are required to determine the long-term effects of this intervention.
Resumo:
The aim of this retrospective study was to compare the clinical and radiographic results after TKA (PFC, DePuy), performed either by computer assisted navigation (CAS, Brainlab, Johnson&Johnson) or by conventional means. Material and methods: Between May and December 2006 we reviewed 36 conventional TKA performed between 2002 and 2003 (group A) and 37 navigated TKA performed between 2005 and 2006 (group B) by the same experienced surgeon. The mean age in group A was 74 years (range 62-90) and 73 (range 58-85) in group B with a similar age distribution. The preoperative mechanical axes in group A ranged from -13° varus to +13° valgus (mean absolute deviation 6.83°, SD 3.86), in group B from -13° to +16° (mean absolute deviation 5.35, SD 4.29). Patients with a previous tibial osteotomy or revision arthroplasty were excluded from the study. Examination was done by an experienced orthopedic resident independent of the surgeon. All patients had pre- and postoperative long standing radiographs. The IKSS and the WOMAC were utilized to determine the clinical outcome. Patient's degree of satisfaction was assessed on a visual analogous scale (VAS). Results: 32 of the 37 navigated TKAs (86,5%) showed a postoperative mechanical axis within the limits of 3 degrees of valgus or varus deviation compared to only 24 (66%) of the 36 standard TKAs. This difference was significant (p = 0.045). The mean absolute deviation from neutral axis was 3.00° (range -5° to +9°, SD: 1.75) in group A in comparison to 1.54° (range -5° to +4°, SD: 1.41) in group B with a highly significant difference (p = 0.000). Furthermore, both groups showed a significant postoperative improvement of their mean IKSS-values (group A: 89 preoperative to 169 postoperative, group B 88 to 176) without a significant difference between the two groups. Neither the WOMAC nor the patient's degree of satisfaction - as assessed by VAS - showed significant differences. Operation time was significantly higher in group B (mean 119.9 min.) than in group A (mean 99.6 min., p <0.000). Conclusion: Our study showed consistent significant improvement of postoperative frontal alignment in TKA by computer assisted navigation (CAS) compared to standard methods, even in the hands of a surgeon well experienced in standard TKA implantation. However, the follow-up time of this study was not long enough to judge differences in clinical outcome. Thus, the relevance of computer navigation for clinical outcome and survival of TKA remains to be proved in long term studies to justify the longer operation time. References 1 Stulberg SD. Clin Orth Rel Res. 2003;(416):177-84. 2 Chauhan SK. JBJS Br. 2004;86(3):372-7. 3 Bäthis H, et al. Orthopäde. 2006;35(10):1056-65.
Resumo:
Bone defects in revision knee arthroplasty are often located in load-bearing regions. The goal of this study was to determine whether a physiologic load could be used as an in situ osteogenic signal to the scaffolds filling the bone defects. In order to answer this question, we proposed a novel translation procedure having four steps: (1) determining the mechanical stimulus using finite element method, (2) designing an animal study to measure bone formation spatially and temporally using micro-CT imaging in the scaffold subjected to the estimated mechanical stimulus, (3) identifying bone formation parameters for the loaded and non-loaded cases appearing in a recently developed mathematical model for bone formation in the scaffold and (4) estimating the stiffness and the bone formation in the bone-scaffold construct. With this procedure, we estimated that after 3 years mechanical stimulation increases the bone volume fraction and the stiffness of scaffold by 1.5- and 2.7-fold, respectively, compared to a non-loaded situation.
Resumo:
Introduction: Coordination is a strategy chosen by the central nervous system to control the movements and maintain stability during gait. Coordinated multi-joint movements require a complex interaction between nervous outputs, biomechanical constraints, and pro-prioception. Quantitatively understanding and modeling gait coordination still remain a challenge. Surgeons lack a way to model and appreciate the coordination of patients before and after surgery of the lower limbs. Patients alter their gait patterns and their kinematic synergies when they walk faster or slower than normal speed to maintain their stability and minimize the energy cost of locomotion. The goal of this study was to provide a dynamical system approach to quantitatively describe human gait coordination and apply it to patients before and after total knee arthroplasty. Methods: A new method of quantitative analysis of interjoint coordination during gait was designed, providing a general model to capture the whole dynamics and showing the kinematic synergies at various walking speeds. The proposed model imposed a relationship among lower limb joint angles (hips and knees) to parameterize the dynamics of locomotion of each individual. An integration of different analysis tools such as Harmonic analysis, Principal Component Analysis, and Artificial Neural Network helped overcome high-dimensionality, temporal dependence, and non-linear relationships of the gait patterns. Ten patients were studied using an ambulatory gait device (Physilog®). Each participant was asked to perform two walking trials of 30m long at 3 different speeds and to complete an EQ-5D questionnaire, a WOMAC and Knee Society Score. Lower limbs rotations were measured by four miniature angular rate sensors mounted respectively, on each shank and thigh. The outcomes of the eight patients undergoing total knee arthroplasty, recorded pre-operatively and post-operatively at 6 weeks, 3 months, 6 months and 1 year were compared to 2 age-matched healthy subjects. Results: The new method provided coordination scores at various walking speeds, ranged between 0 and 10. It determined the overall coordination of the lower limbs as well as the contribution of each joint to the total coordination. The difference between the pre-operative and post-operative coordination values were correlated with the improvements of the subjective outcome scores. Although the study group was small, the results showed a new way to objectively quantify gait coordination of patients undergoing total knee arthroplasty, using only portable body-fixed sensors. Conclusion: A new method for objective gait coordination analysis has been developed with very encouraging results regarding the objective outcome of lower limb surgery.
Resumo:
We assessed knee extensor neuromuscular adjustments following repeated treadmill sprints in different normobaric hypoxia conditions, with special reference to rapid muscle torque production capacity. Thirteen team- and racquet-sport athletes undertook 8 × 5-s "all-out" sprints (passive recovery = 25 s) on a non-motorized treadmill in normoxia (NM; FiO2 = 20.9%), at low (LA; FiO2 = 16.8%) and high (HA; FiO2 = 13.3%) normobaric hypoxia (simulated altitudes of ~1800 m and ~3600 m, respectively). Explosive (~1 s; "fast" instruction) and maximal (~5 s; "hard" instruction) voluntary isometric contractions (MVC) of the knee extensors (KE), with concurrent electromyographic (EMG) activity recordings of the vastus lateralis (VL) and rectus femoris (RF) muscles, were performed before and 1-min post-exercise. Rate of torque development (RTD) and EMG (i.e., Root Mean Square or RMS) rise from 0 to 30, -50, -100, and -200 ms were recorded, and were also normalized to maximal torque and EMG values, respectively. Distance covered during the first 5-s sprint was similar (P > 0.05) in all conditions. A larger (P < 0.05) sprint decrement score and a shorter (P < 0.05) cumulated distance covered over the eight sprints occurred in HA (-8 ± 4% and 178 ± 11 m) but not in LA (-7 ± 3% and 181 ± 10 m) compared to NM (-5 ± 2% and 183 ± 9 m). Compared to NM (-9 ± 7%), a larger (P < 0.05) reduction in MVC torque occurred post-exercise in HA (-14 ± 9%) but not in LA (-12 ± 7%), with no difference between NM and LA (P > 0.05). Irrespectively of condition (P > 0.05), peak RTD (-6 ± 11%; P < 0.05), and normalized peak RMS activity for VL (-8 ± 11%; P = 0.07) and RF (-14 ± 11%; P < 0.01) muscles were reduced post-exercise, whereas reductions (P < 0.05) in absolute RTD occurred within the 0-100 (-8 ± 9%) and 0-200 ms (-10 ± 8%) epochs after contraction onset. After normalization to MVC torque, there was no difference in RTD values. Additionally, the EMG rise for VL muscle was similar (P > 0.05), whereas it increased (P < 0.05) for RF muscle during all epochs post-exercise, independently of the conditions. In summary, alteration in repeated-sprint ability and post-exercise MVC decrease were greater at high altitude than in normoxia or at low altitude. However, the post-exercise alterations in RTD were similar between normoxia and low-to-high hypoxia.