955 resultados para Jesolo,area X-site, laguna
Resumo:
Aim: Models project that climate warming will cause the tree line to move to higher elevations in alpine areas and more northerly latitudes in Arctic environments. We aimed to document changes or stability of the tree line in a sub-Arctic model area at different temporal and spatial scales, and particularly to clarify the ambiguity that currently exists about tree line dynamics and their causes. Location: The study was conducted in the Tornetrask area in northern Sweden where climate warmed by 2.5 °C between 1913 and 2006. Mountain birch (Betula pubescens ssp. czerepanovii) sets the alpine tree line. Methods: We used repeat photography, dendrochronological analysis, field observations along elevational transects and historical documents to study tree line dynamics. Results: Since 1912, only four out of eight tree line sites had advanced: on average the tree line had shifted 24 m upslope (+0.2 m/year assuming linear shifts). Maximum tree line advance was +145 m (+1.5 m/year in elevation and +2.7 m/year in actual distance), whereas maximum retreat was 120 m downslope. Counter-intuitively, tree line advance was most pronounced during the cooler late 1960s and 1970s. Tree establishment and tree line advance were significantly correlated with periods of low reindeer (Rangifer tarandus) population numbers. A decreased anthropozoogenic impact since the early 20th century was found to be the main factor shaping the current tree line ecotone and its dynamics. In addition, episodic disturbances by moth outbreaks and geomorphological processes resulted in descent and long-term stability of the tree line position, respectively. Main conclusions: In contrast to what is generally stated in the literature, this study shows that in a period of climate warming, disturbance may not only determine when tree line advance will occur but if tree line advance will occur at all. In the case of non-climatic climax tree lines, such as those in our study area, both climate-driven model projections of future tree line positions and the use of the tree line position for bioclimatic monitoring should be used with caution.
Resumo:
Eocene sediments drilled at the East Tasman Plateau (ETP) exhibit well-defined cycles, high-resolution magnetic stratigraphy, and environmentally-controlled dinoflagellate and diatom distribution patterns. We derive a cyclostratigraphy from the spectral analysis of high-resolution elemental concentration records (Ca, Fe) for this shallow marine time series spanning the middle to early late Eocene (C16n.2n - C21). Changes in carbonate content, the ratio between Gonyaulacoid and Peridinioid dinocysts, and relative abundance of "oligotrophic" diatoms serve as proxies for a high-resolution climatic and sea-level history with high values representing high sea-level stands and decreased eutrophy of surface waters. Changing ratios between high latitude dinocysts versus cosmopolitan species provide clues on sea surface temperature trends and water mass exchange. Our results show that the relatively shallow-water middle Eocene environments of the ETP are influenced by orbitally-forced climatic cycles superimposed on third order relative sea-level changes. Changes in the dominance of Milankovitch frequency at ~38.6 Ma (late Eocene) is related to an initial deepening-step within the Tasmanian Gateway prior to the major deepening during the middle late Eocene (~35.5 Ma). Decreasing sedimentation rates at 38 Ma and 37.2 Ma reflect winnowing associated with sea-level fall. This episode is followed by renewed transgression. Dinocyst distribution patterns indicate high latitude, probably cool temperate surface water conditions throughout, with the exception of a sudden surge in cosmopolitan species near the base of subchron C18.2r, at ~41 Ma; this event is tentatively correlated to the Middle Eocene Climatic Optimum.
Resumo:
We present a detailed study of glacial/interglacial deep sea benthic ostracod assemblage variability at IODP Site U1314 (subpolar North Atlantic) in relation to the history of ice-rafting events and changes in deep ocean circulation over the past 170 ky. Our records of ostracod diversity, abundance and dissolution and sediment properties (IRD and CaCO3) show an excellent correspondence to high amplitude orbital and millennial variability observed in the climate records (d13C and d18O) from neighboring deep water sites, suggesting that the benthic meiofauna fluctuates synchronously with the prevailing oceanographic conditions (surface ocean conditions, deep ocean circulation and water temperature and food flux). Krithe (dominant), Argilloecia and Cytheropteron are the most abundant and diverse genera in association with Rockallia enigmatica. Three ostracod assemblages are recognized. The genera Pennyella, Argilloecia, Pelecocythere, Ambocythere, Pseudobosquetina, Bradleya and Nannocythere are associated with interglacials and interstadials, and possibly reflect increased flux of food to the sediments and more vigorous NADW formation. A transitional assemblage composed of species of Cytheropteron, Xestoleberis and Eucythere is restricted to climatic transitions and indicate moderate environmental conditions and seasonal productivity. A glacial/stadial assemblage is characterized by a temporal predominance of either intermediate-depth and shallow water Arctic/subarctic species (belonging to Cytheropteron, Polycope, Pedicythere, Swainocythere, Cluthia, Heterocyprideis, Elofsonella and Finmarchinella) or abyssal North Atlantic ostracods (Bythocythere, Dutoitella, Bathycythere and Bythocypris). The influx of high latitude taxa can be partially explained by ice-rafting, but may also represent a shift of the location of intermediate and deep water convection to the area south of Iceland. Therefore the combination of species characteristic of different watermasses during glacials may reflect shifts in the influence of high nutrient southern source water (e.g. AABW) vs. low nutrient GNAIW during glacials.
Resumo:
"November 30, 2005; CERCLIS No. NYD047650197."
Resumo:
Cover title.
Resumo:
Cover title.
Resumo:
In a 2002 Record of decision, the Illinois Environmental Protection Agency (IEPA) outlined remedies for four major sources of groundwater contamination found in the Southeast Rockford Groundwater Contamination Superfund Site. This fact sheet updates information on further investigations at the Area 4, Area 7, Area 9/10 and Area 11 locations.
Resumo:
Issued Jan. 1980.
Resumo:
Strontium has been substituted for calcium in the glass series (SiO2)49.46(Na2O)26.38(P2O5)1.07(CaO)23.08x(SrO)x (where x = 0, 11.54, 23.08) to elucidate their underlying atomic-scale structural characteristics as a basis for understanding features related to the bioactivity. These bioactive glasses have been investigated using isomorphic neutron and X-ray diffraction, Sr K-edge EXAFS and solid state 17O, 23Na, 29Si, 31P and 43Ca magic-angle-spinning (MAS) NMR. An effective isomorphic substitution first-order difference function has been applied to the neutron diffraction data, confirming that Ca and Sr behave in a similar manner within the glass network, with residual differences attributed to solely the variation in ionic radius between the two species. The diffraction data provides the first direct experimental evidence of split Ca–O nearest-neighbour correlations in these melt quench bioactive glasses, together with an analogous splitting of the Sr–O correlations; the correlations are attributed to the metal ions correlated either to bridging or to non-bridging oxygen atoms. Triple quantum (3Q) 43Ca MAS NMR corroborates the split Ca–O correlations. Successful simplification of the 2 < r (A) < 3 region via the difference method has also revealed two distinct Na environments. These environments are attributed to sodium correlated either to bridging or to nonbridging oxygen atoms. Complementary multinuclear MAS NMR, Sr K-edge EXAFS and X-ray diffraction data supports the structural model presented. The structural sites present will be intimately related to their release properties in physiological fluids such as plasma and saliva, and hence the bioactivity of the material. Detailed structural knowledge is therefore a prerequisite for optimising material design.
Resumo:
The purpose of the study was to evaluate the magnitude of environmental lead contamination in the downtown area of Miami. Lead inspections took place at 121 homes in Little Haiti and Liberty City and involved the collection ofrepresentative samples from floors, window wells, tap water, soil and air. Community health workers (CHWs) trained in interview and safety techniques went from door to door to enlist participation. On-site investigations were tailored to areas most utilized by children underthe age of6 years. The presence of lead-containing paint was also investigated in situ via X-ray fluorescence (XRF) analysis. Results: Of the sampling areas, the window wells area had the most abundant occurrence of lead. On analysis, 24% of sites returned window well samples with lead levels above Department of Housing and Urban Development (HUD) guidelines. Of the soil samples, the playgrounds around the house had the highest concentration of lead. Soil sampling demonstrated that 27.5% of sites returned samples with lead levels (400 to 1600 ppm) inexcess of HUD/Environmental Protection Agency (EPA) standards. Positive XRF readings in one or more components were returned by 18% of sites. Conclusions: More than half of the houses in these two neighborhoods exhibited unacceptably high levels of lead dust and soil in areas where children live and play. Limitations of this study did not allow the assessment of how many children in this area are affected. A more comprehensive study including other areas of Miami-Dade County with older housing stock is recommended.
Resumo:
Barium Cerate (BaCeO3) is perovskite type structure of ABO3, wherein A and B are metal cations. These materials, or doped, have been studied by having characteristics that make them promising for the application in fuel cells solid oxide, hydrogen and oxygen permeation, as catalysts, etc .. However, as the ceramic materials mixed conductivity have been produced by different synthesis methods, some conditions directly influence the final properties, one of the most important doping Site B, which may have direct influence on the crystallite size, which in turn directly influences their catalytic activity. In this study, perovskite-type (BaCexO3) had cerium gradually replaced by praseodymium to obtain ternary type materials BaCexPr1-xO3 and BaPrO3 binaries. These materials were synthesized by EDTA/Citrate complexing method and the material characterized via XRD, SEM and BET for the identification of their structure, morphology and surface area. Moreover were performed on all materials, catalytic test in a fixed bed reactor for the identification of that person responsible for complete conversion of CO to CO2 at low operating temperature, which step can be used as the subsequent production of synthesis gas (CO + H2) from methane oxidation. In the present work the crystalline phase having the orthorhombic structure was obtained for all compositions, with a morphology consisting of agglomerated particles being more pronounced with increasing praseodymium in the crystal structure. The average crystal size was between 100 nm and 142,2 nm. The surface areas were 2,62 m²g-1 for the BaCeO3 composition, 3,03 m²g-1 to BaCe0,5Pr0,5O3 composition and 2,37 m²g-1 to BaPrO3 composition. Regarding the catalytic tests, we can conclude that the optimal flow reactor operation was 50 ml / min and the composition regarding the maximum rate of conversion to the lowest temperature was BaCeO3 to 400° C. Meanwhile, there was found that the partially replaced by praseodymium, cerium, there was a decrease in the catalytic activity of the material.