757 resultados para Jeffrey Kroessler
Resumo:
In 2001, representative samples of adult Columbia Basin chinook (Oncorhynchus tshawytscha), sockeye (O. nerka), and coho salmon (O. kisutch) populations at Bonneville Dam were collected. Fish were trapped, anesthetized, sampled for scales and biological data, revived, and then released adult migrating salmonids. Scales were examined to estimate age composition; the results contributed to an ongoing database for age class structure of Columbia Basin salmon populations. Based on scale analysis of chinook salmon, four-year-old fish (from brood year [BY] 1997) comprised 88% of the spring chinook, 67% of the summer chinook, and 42% of the Bright fall chinook salmon population. Five-year-old fish (BY 1996) comprised 9% of the spring chinook, 14% of the summer chinook, and 9% of the fall chinook salmon population. The sockeye salmon population at Bonneville was predominantly four-year-old fish (81%), with 18% returning as five-year-olds in 2001. The coho salmon population was 96% three-year-old fish (Age 1.1). Length analysis of the 2001 returns indicated that chinook salmon with a stream-type life history are larger (mean length) than the chinook salmon with an ocean-type life history. Trends in mean length over the sampling period for returning 2001 chinook salmon were analyzed. Chinook salmon of age classes 0.2 and 1.3 show a significant increase in mean length over time. Age classes 0.1, 0.3, 0.4, 1.1, 1.2, and 1.4 show no significant change over time. A year class regression over the past 12 years of data was used to predict spring, summer, and Bright fall chinook salmon population sizes for 2002. Based on three-year-old returns, the relationship predicts four-year-old returns of 132,600 (± 46,300, 90% predictive interval [PI]) spring chinook and 44,200 (± 11,700, 90% PI) summer chinook salmon for the 2002 runs. Based on four-year-old returns, the relationship predicts five-year-old returns of 87,800 (± 54,500, 90% PI) spring, 33,500 (± 11,500, 90% PI) summer, and 77,100 (± 25,800, 90% PI) Bright fall chinook salmon for the 2002 runs. The 2002 run size predictions should be used with caution; some of these predictions are well beyond the range of previously observed data.
Resumo:
In 2000, representative samples of adult Columbia Basin chinook (Oncorhynchus tshawytscha), sockeye (O. nerka), and coho salmon (O. kisutch), populations were collected at Bonneville Dam. Fish were trapped, anesthetized, sampled for scales and biological data, allowed to revive, and then released. Scales were examined to estimate age composition and the results contribute to an ongoing database for age class structure of Columbia Basin salmon populations. Based on scale analysis, four-year-old fish (from brood year (BY) 1996) were estimated to comprise 83% of the spring chinook, 31% of the summer chinook, and 32% of the upriver bright fall chinook salmon population. Five-year-old fish (BY 1995) were estimated to comprise 2% of the spring chinook, 26% of the summer chinook, and 40% of the fall chinook salmon population. Three-year-old fish (BY 1997) were estimated to comprise 14% of the spring chinook, 42% of the summer chinook, and 17% of the fall chinook salmon population. Two-year-olds accounted for approximately 11% of the fall chinook population. The sockeye salmon population sampled at Bonneville was predominantly four-year-old fish (95%), and the coho salmon population was 99.9% three-year-old fish (Age 1.1). Length analysis of the 2000 returns indicated that chinook salmon with a stream-type life history are larger (mean length) than the chinook salmon with an ocean-type life history. Trends in mean length over the sampling period were also analysis for returning 2000 chinook salmon. Fish of age classes 0.2, 1.1, 1.2, and 1.3 have a significant increase in mean length over time. Age classes 0.3 and 0.4 have no significant change over time and age 0.1 chinook salmon had a significant decrease in mean length over time. A year class regression over the past 11 years of data was used to predict spring and summer chinook salmon population sizes for 2001. Based on three-year-old returns, the relationship predicts four-year-old returns of 325,000 (± 111,600, 90% Predictive Interval [PI]) spring chinook and 27,800 (± 29,750, 90% PI) summer chinook salmon. Based on four-year-old returns, the relationship predicts five-year-old returns of 54,300 (± 40,600, 90% PI) spring chinook and 11,000 (± 3,250, 90% PI) summer chinook salmon. The 2001 run size predictions used in this report should be used with caution, these predictions are well beyond the range of previously observed data.
Resumo:
In 2002, representative samples of migrating Columbia Basin chinook (Oncorhynchus tshawytscha), sockeye (O. nerka), and coho salmon (O. kisutch) adult populations were collected at Bonneville Dam. Fish were trapped, anesthetized, sampled for scales and biological data, revived, and then released. Scales were examined to estimate age composition; the results contributed to an ongoing database for age class structure of Columbia Basin salmon populations. Based on scale analysis of chinook salmon, four-year-old fish (from brood year [BY] 1998) comprised 86% of the spring chinook, 51% of the summer chinook, and 51% of the bright fall chinook salmon population. Five-year-old fish (BY 1997) comprised 13% of the spring chinook, 43% of the summer chinook, and 11% of the bright fall chinook salmon population. The sockeye salmon population at Bonneville was predominantly five-year-old fish (55%), with 40% returning as four-year-olds in 2002. For the coho salmon population, 88% of the population was three-year-old fish of age class 1.1, while 12% were age class 1.0. Length analysis of the 2002 returns indicated that chinook salmon with a stream-type life history are larger (mean length) at age than the chinook salmon with an ocean-type life history. Trends in mean length over the sampling period for returning 2002 chinook salmon were analyzed. Chinook salmon of age classes 1.2 and 1.3 show a significant increase in mean length over the duration of the migration. A year class regression over the past 14 years of data was used to predict spring, summer, and bright fall chinook salmon population sizes for 2003. Based on three-year-old returns, the relationship predicts four-year-old returns of 54,200 (± 66,600, 90% predictive interval [PI]) spring chinook, 23,800 (± 19,100, 90% PI) summer, and 169,100 (± 139,500, 90% PI) bright fall chinook salmon for the 2003 runs. Based on four-year-old returns, the relationship predicts five-year-old returns of 36,300 (± 35,400, 90% PI) spring, 63,800 (± 10,300, 90% PI) summer, and 91,100 (± 69,400, 90% PI) bright fall chinook salmon for the 2003 runs. The 2003 run size predictions should be used with caution; some of these predictions are well beyond the range of previously observed data.
Resumo:
千里光族是菊科中最大的一个族,约含有120属3400多种,全世界分布。千里光族的族下分类与系统发育一直是菊科研究中的难点。Jeffrey&Chen(1984)和千里光亚族(7属)。自此以后,有关东亚款冬亚族的范畴、亚族内各属的系统位置与亲缘关系就成了千里光族系统学研究中争论的焦点,至今仍未有定论。陈艺(1997)在东亚款冬亚族内发表假橐吾属新属。根据Jeffrey&Chen(1984)的概念,东亚款冬亚族现含13属。东亚款冬亚族目前存在的系统学问题主要有:(1)毛冠菊属是否与款冬亚族内的款冬属及蜂斗菜属近缘;(2)狗舌草亚族所辖3属是否是款冬亚族的自然成员;(3)东亚款冬亚族13属的系统位置及其亲缘关系;(4)东亚款冬亚族的影响范畴。 针对上述问题,本文以发现新的系统学证据为主要目的,较为全面地研究了东亚款冬亚族及其相关类群的外部形态学,首次报道了18属45种植物的花部微观性状,19属64种105个居群的核形态学特征,10属15种植物花粉壁的超薄结构及13属28种植物花粉的外壁纹饰,3种植物的胚胎发育和6种植物的ITS基因序列;并对所获得的证据进行了比较与综合分支分析。根据所获系统学资料,对东亚款冬亚族的上述系统学问题进行了讨论。主要实验结果及结论总结如下。 1. 外部形态 较为全面地观察与分析了东亚款冬亚族及其相关类群外部形态性状及其演化趋势,指出根状茎分枝方式、幼叶出土性状、花部茎基部叶是否宿存、叶柄是否纤维状宿存、花序托空心或实心、花药基部结构等不被以前作者重视或忽视的形态学性状可能具有重要的系统学价值。外部形态上,毛冠菊属与千里光族内的千里光属与款冬属等类群没有亲缘关系,而与紫菀族存在一定的渊源;狗舌草亚族则介于千里光亚族和款冬亚族之间;东亚款冬亚族13属可依据外部形态划分为6个属群。 2. 花部微观性状 东亚款冬亚族及其相关类群的花部微观性状主要包括:花药顶端不育组织、花药药室内壁、花药基部、花药领、花柱分枝顶端、花柱毛被、花柱分枝内表面构型、果柄细胞列数等。花部微观性状研究表明:毛冠菊属似乎应作为紫菀族中的一个孤立属;狗舌草亚族在某些衍征上与千里光亚族接近,而它的原始性状则类似于款冬亚族;根据花部微观性状对东亚款冬亚族的13个属划分出的自然属群与形态性状分析所得结果基本一致。 3. 核形态学 毛冠菊属的染色体基数为x=9,与紫菀族相同:而与千里光族和旋覆花族的染色体x=10存在显著的区别。狗舌草亚族中新发现2n=24、60、72三个染色体数目,亚族内染色体基数之间的演化关系不清楚,利用染色体基数来探讨狗舌草亚族所辖属的系统位置和属间关系仍还比较困难。东亚款冬亚族的染色体基数主要有x=30、29、28、27、26;款冬亚族中普遍存在的染色体基数x=30可能有3种来源;核型可分为2A、3A、2B三大类型,虽然三种类型之间的染色体基数(x=30)有可能是不同起源的,但从整个千里光族来看,3A、2B应是较进化的类型。根据核形态学特征,东亚款冬亚族可分为款冬型、蟹甲草型和大吴风草型三类。在蟹甲草型染色体进化支上,存在染色体的非整倍性下降趋势。东亚款冬亚族存在的种内多倍性可能与不同的生境有关。 4. 花粉学 通过对东亚款冬亚族及其相关类群的花粉壁超微结构与扫描电镜观察,发现花粉壁超微结构存在“千里光型”和“向日葵型”两种类型。扫描电镜下,花粉外壁均为刺状纹饰,但在刺的长短、刺部是否膨大、刺基膨大上的纹饰以及刺基之间的纹饰等方面存在差别。毛冠菊属的花粉性状组合支持将其置于紫菀族中。狗舌草亚族的花粉性状与款冬亚族的有些属相似。款冬亚族各属的花粉生状组合所划分的属群与形态学、核形态学等方面的研究结果较为一致。 5. 胚胎学 款冬、掌裂橐吾和珠毛蟹甲草共同拥有药壁发育双子叶型;绒毡层发育属“The Comos bipinnatus”型;成熟花粉为3细胞型;单珠被,薄珠心,倒生胚珠;具发育相似的珠被绒毡层:胚橐发育4孢子型等胚胎学特征,但它们在胚囊发育方式、反足细胞数目、发殖物候上还存在区别。三属代表植物的胚胎学研究支持将它们作为同一亚族的成员。 6. 分子数据 利用本研究测得的华千里光属4种、狗舌草属1种和大吴风草属的ITS-1和ITS-2基因序列,结合从Genbank中得出的千里光族5属8种植物得ITS序列,用PAUP软件进行分析。研究结果表明,染色体基数、花粉超微结构、叶型和叶脉等性状在ITS分支图上存在趋同进化;华千里光属和狗舌草属不是单系群。并讨论了一些分类群的亲缘关系。 7. 分支分析 选择东亚款冬亚族和狗舌草亚族各属的代表种作为终端代表类群进行分支分析;分支分析表明染色体基数、与头状花序有关的性状、叶型及叶脉等性状存在较多的平行与逆转进化,而根状茎分枝类型、花部微观性状以及花粉性状则表现出较大的一致性。根据分支结果,作者认为应建立包括狗舌草亚族在内的广义东亚款冬亚族。 8. 系统学 毛冠菊属的性状组合支持将其置于紫菀族,排除在千里光族之外。广义东亚款冬亚族可分为7个属群:蟹甲草属群(包括蟹甲草属,华蟹甲草属,小蟹甲草属,兔儿伞属,蟹甲木属)、毛柱菊属群(毛柱菊属)、橐吾属群(包括橐吾属,垂头菊属,假橐吾属)、狗舌草属群(狗舌草属,华千里光属,羽叶千里光属)、多榔菊属群(多榔菊属)、大吴风草属群(大吴风草属)、款冬属群(款冬属,蜂斗菜属)。总结与讨论了各属群的系统位置、亲缘关系与存在的分类学问题。描述了华千里光属1新种。
Resumo:
EXTRACT (SEE PDF FOR FULL ABSTRACT): Oceanographic, hydrologic, and climatic data collected during 1916-'87 in Puget Sound's Main Basin (~200 m x 5 km x 100 km) and approaches oscillate at low frequency between two regimes (I, II). The oscillation accounts for a large fraction of the interannual variability (41-75%) and the zero crossings between regimes span approximately a decade. ... The transition between regimes is accompanied by substantial changes in the horizontal pressure and density fields between the Pacific coast and the mixing zones leading to the Basin, as well as within the Basin itself.
Resumo:
Seasonal trawling was conducted randomly in coastal (depths of 4.6–17 m) waters from St. Augustine, Florida, (29.9°N) to Winyah Bay, South Carolina (33.1°N), during 2000–03, 2008–09, and 2011 to assess annual trends in the relative abundance of sea turtles. A total of 1262 loggerhead sea turtles (Caretta caretta) were captured in 23% (951) of 4207 sampling events. Capture rates (overall and among prevalent 5-cm size classes) were analyzed through the use of a generalized linear model with log link function for the 4097 events that had complete observations for all 25 model parameters. Final models explained 6.6% (70.1–75.0 cm minimum straight-line carapace length [SCLmin]) to 14.9% (75.1–80.0 cm SCLmin) of deviance in the data set. Sampling year, geographic subregion, and distance from shore were retained as significant terms in all final models, and these terms collectively accounted for 6.2% of overall model deviance (range: 4.5–11.7% of variance among 5-cm size classes). We retained 18 parameters only in a subset of final models: 4 as exclusively significant terms, 5 as a mixture of significant or nonsignificant terms, and 9 as exclusively nonsignificant terms. Four parameters also were dropped completely from all final models. The generalized linear model proved appropriate for monitoring trends for this data set that was laden with zero values for catches and was compiled for a globally protected species. Because we could not account for much model deviance, metrics other than those examined in our study may better explain catch variability and, once elucidated, their inclusion in the generalized linear model should improve model fits.
Resumo:
Harbor seals (Phoca fvitulina) are an abundant predator along the west coast of North America, and there is considerable interest in their diet composition, especially in regard to predation on valued fish stocks. Available informationon harbor seal diets, primarily derived from scat analysis, suggests that adult salmon (Oncorhynchus spp.), Pacific Herring (Clupea pallasii), and gadids predominate. Because diet assessments based on scat analysis may be biased, we investigated diet composition through quantitative analysis of fatty acid signatures. Blubber samples from 49 harbor seals captured in western North America from haul-outs within the area of the San Juan Islands and southern Strait of Georgia in the Salish Sea were analyzed for fatty acid composition, along with 269 fish and squid specimens representing 27 potential prey classes. Diet estimates varied spatially, demographically, and among individual harbor seals. Findings confirmed the prevalence of previously identified prey species in harbor seal diets, but other species also contributed significantly. In particular, Black (Sebastes melanops) and Yellowtail (S. flavidus) Rockfish were estimated to compose up to 50% of some individual seal diets. Specialization and high predation rates on Black and Yellowtail Rockfish by a subset of harbor seals may play a role in the population dynamics of these regional rockfish stocks that is greater than previously realized.
Resumo:
With the use of a baited stereo-video camera system, this study semiquantitatively defined the habitat associations of 4 species of Lutjanidae: Opakapaka (Pristipomoides filamentosus), Kalekale (P. sieboldii), Onaga (Etelis coruscans), and Ehu (E. carbunculus). Fish abundance and length data from 6 locations in the main Hawaiian Islands were evaluated for species-specific and size-specific differences between regions and habitat types. Multibeam bathymetry and backscatter were used to classify habitats into 4 types on the basis of substrate (hard or soft) and slope (high or low). Depth was a major influence on bottomfish distributions. Opakapaka occurred at depths shallower than the depths at which other species were observed, and this species showed an ontogenetic shift to deeper water with increasing size. Opakapaka and Ehu had an overall preference for hard substrate with low slope (hard-low), and Onaga was found over both hard-low and hard-high habitats. No significant habitat preferences were recorded for Kalekale. Opakapaka, Kalekale, and Onaga exhibited size-related shifts with habitat type. A move into hard-high environments with increasing size was evident for Opakapaka and Kalekale. Onaga was seen predominantly in hard-low habitats at smaller sizes and in either hard-low or hard-high at larger sizes. These ontogenetic habitat shifts could be driven by reproductive triggers because they roughly coincided with the length at sexual maturity of each species. However, further studies are required to determine causality. No ontogenetic shifts were seen for Ehu, but only a limited number of juveniles were observed. Regional variations in abundance and length were also found and could be related to fishing pressure or large-scale habitat features.