970 resultados para Isomerization of Epoxides
Resumo:
In this work, the use of proton nuclear magnetic resonance, (1)H NMR, was fully described as a powerful tool to follow a photoreaction and to determine accurate quantum yields, so called true quantum yields (Phi(true)), when a reactant and photoproduct absorption overlap. For this, Phi(true) for the trans-cis photoisomerization process were determined for rhenium(I) polypyridyl complexes, fac-[Re(CO)(3)(NN)(trans-L)](+) (NN = 1,10-phenanthroline, phen, or 4,7-diphenyl-1,10-phenanthroline, ph(2)phen, and L = 1,2-bis(4-pyridyl) ethylene, bpe, or 4-styrylpyridine, stpy). The true values determined at 365 nm irradiation (e. g. Phi(NMR) = 0.80 for fac-[Re(CO)(3)(phen)(trans-bpe)](+)) were much higher than those determined by absorption spectral changes (Phi(UV-Vis) = 0.39 for fac-[Re(CO)(3)(phen)(trans-bpe)](+)). Phi(NMR) are more accurate in these cases due to the distinct proton signals of trans and cis-isomers, which allow the actual determination of each component concentration under given irradiation time. Nevertheless when the photoproduct or reactant contribution at the probe wavelength is negligible, one can determine Phi(true) by regular absorption spectral changes. For instance, Phi(313) nm for free ligand photoisomerization determined both by absorption and (1)H NMR variation are equal within the experimental error (bpe: Phi(UV-Vis) = 0.27, Phi(NMR) = 0.26; stpy: Phi(UV-Vis) = 0.49, Phi(NMR) = 0.49). Moreover, (1)H NMR data combined with electronic spectra allowed molar absorptivity determination of difficult to isolate cis-complexes. (C) 2009 Elsevier B. V. All rights reserved.
Resumo:
This work reports a state-of-the-art theoretical characterization of four new sulfur-bromine species and five transition states on the [H, S(2), Br] potential energy surface. Our highest level theoretical approach employed the method coupled cluster singles and doubles with perturbative contributions of connected triples, CCSD(T), along with the series of correlation-consistent basis sets and with extrapolation to the complete basis set (CBS) limit in the optimization of the geometrical parameters and to quantify the energetic quantities. The structural and vibrational frequencies here reported are unique and represent the most accurate investigation to date of these species. The global minimum corresponds to a skewed structure HSSBr with a disulfide bond; this is followed by a pyramidal-like structure, SSHBr, 18.85 kcal/mol above the minimum. Much higher in energy, we found another skewed structure, HSBrS (50.29 kcal/mol), with one S-Br dative-type bond, and another pyramidal-like one, HBrSS (109.80 kcal/mol), with two S-Br dative-type bonds. The interconversion of HSSBr into SSHBr can occur via a transfer of either the hydrogen or the bromine atom but involves a very high barrier of about 43 kcal/mol. These molecules are potentially a new route of coupling the sulfur and bromine chemistry in the atmosphere, and conditions of high concentration of H(2)S like in volcanic eruptions might contribute to their formation. We note that HSSBr can act as a reservoir molecule for the reaction between the radicals HSS and Br. Also, an assessment of the methods DFT/B3LYP/CBS and MP2/CBS relative to CCSD(T)/CBS provides insights on the expected performance of these methods on the characterization of polysulfides and also of more complex systems containing disulfide bridges.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Density functional theory (DFT) calculations point out that the participation of water can effectively lower the barrier height for the isomerization process between hydrated oxide cation, MO(H2O)(+), and dihydroxide cation, M(OH)(2)(+), (M = V, Nb and Ta). The catalytic effect is achieved by a water-assisted mechanism in which water acts as proton donor and acceptor, via a transition structure corresponding to a six-membered ring. In the case of vanadium atom, the presence of two water molecules has been taken into account and the tautomerization becomes nearly barrierless, decreasing both the stability of the transition structures relative to intermediates and the depths of wells associated with the intermediates. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Several factors render carotenoid determination inherently difficult. Thus, in spite of advances in analytical instrumentation, discrepancies in quantitative results on carotenoids can be encountered in the international literature. A good part of the errors comes from the pre-chromatographic steps such as sampling scheme that does not yield samples representative of the food lots under investigation; sample preparation which does not maintain representativity and guarantee homogeneity of the analytical sample; incomplete extraction; physical losses of carotenoids during the various steps, especially during partition or washing and by adsorption to glass walls of containers; isomerization and oxidation of carotenoids during analysis. on the otherhand, although currently considered the method of choice for carotenoids, high performance liquid chromatography (HPLC) is subject to various sources of errors, such as: incompatibility of the injection solvent and the mobile phase, resulting in distorted or split peaks; erroneous identification; unavailability, impurity and instability of carotenoid standards; quantification of highly overlapping peaks; low recovery from the HPLC column; errors in the preparation of standard solutions and in the calibration procedure; calculation errors. Illustrations of the possible errors in the quantification of carotenoids by HPLC are presented.
Resumo:
A theoretical model on the basis of the free-volume concept is presented explaining the temperature dependence of photoinduced birefringence in polystyrene films that contain Disperse Red-1. Birefringence increases with temperature up to 180 K as the free volume for isomerization increases, and then decreases as thermally activated processes dominate. The fast process of birefringence decay has a time constant that increases with temperature at low temperatures, due to the change kin photoisomerization.
Resumo:
The electrochemical oxidation of some p-substituted benzylic derivatives of Co(III) dimethylglyoximato and Co(III)bis(salicylaldehydc)o-phenylenediimine in dimethylformamide. 0.2 M in tetraethyammonium perchlorate, on a platinum electrode, at several temperatures, is described as an ECE type, the first electrochemical step being a quasi-reversible one-electron charge transfer at room temperature. At temperatures around -20°C, or lower, the influence of the irreversible chemical decomposition of the oxidized species, via a solvent or other nucleophilic-assisted reaction, is negligible. It is suggested that at low temperatures the oxidation to the formally CoIV-R species is followed by an isomerization reaction in which this complex is partially transformed in a CoIII-(R) species or a s π-complex which undergoes an electroreduction at less positive potentials than those corresponding to the reduction of the CoIV-R species. © 1982.
Resumo:
Background: Glucosamine 6-phosphate deaminase from Escherichia coli is an allosteric hexameric enzyme which catalyzes the reversible conversion of D-glucosamine 6-phosphate into D-fructose 6-phosphate and ammonium ion and is activated by N-acetyl-D-glucosamine 6-phosphate. Mechanistically, it belongs to the group of aldose-ketose isomerases, but its reaction also accomplishes a simultaneous amination/deamination. The determination of the structure of this protein provides fundamental knowledge for understanding its mode of action and the nature of allosteric conformational changes that regulate its function. Results: The crystal structure of glucosamine 6-phosphate deaminase with bound phosphate ions is presented at 2.1 Å resolution together with the refined structures of the enzyme in complexes with its allosteric activator and with a competitive inhibitor. The protein fold can be described as a modified NAD-binding domain. Conclusions: From the similarities between the three presented structures, it is concluded that these represent the enzymatically active R state conformer. A mechanism for the deaminase reaction is proposed. It comprises steps to open the pyranose ring of the substrate and a sequence of general base-catalyzed reactions to bring about isomerization and deamination, with Asp72 playing a key role as a proton exchanger.
Resumo:
The presence of residual endodontic sealer in the pulp chamber may cause discoloration of the dental crown and interfere with the adhesion of restorative materials. The aim of this study was to compare the efficacy of different solvents in removing residues of an epoxy resin-based sealer (AH Plus) from the dentin walls of the pulp chamber, by scanning electron microscopy (SEM). Forty-four bovine incisor dental crown fragments were treated with 17% EDTA and 2.5% NaOCl. Specimens received a coating of AH Plus and were left undisturbed for 5 min. Then, specimens were divided in four groups (n = 10) and cleaned with one of the following solutions: isopropyl alcohol, 95% ethanol, acetone solution, or amyl acetate solution. Negative controls (n = 2) did not receive AH Plus, while in positive controls (n = 2) the sealer was not removed. AH Plus removal was evaluated by SEM, and a score system was applied. Data were analyzed by Kruskal-Wallis and Dunn tests. None of the solutions tested was able to completely remove AH Plus from the dentin of the pulp chamber. Amyl acetate performed better than 95% ethanol and isopropyl alcohol (p < 0.05), but not better than acetone (p > 0.05) in removing the sealer from dentin. No significant differences were observed between acetone, 95% ethanol, and isopropyl alcohol (p > 0.05). It was concluded that amyl acetate and acetone may be good options for cleaning the pulp chamber after obturation with AH Plus. SCANNING 35:17-21, 2013. © 2012 Wiley Periodicals, Inc. © Wiley Periodicals, Inc.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Xylella fastidiosa is a Gram-negative bacterium that grows as a biofilm inside the xylem vessels of susceptible plants and causes several economically relevant crop diseases. In the present study, we report the functional and low-resolution structural characterization of the X. fastidiosa disulfide isomerase DsbC (XfDsbC). DsbC is part of the disulfide bond reduction/isomerization pathway in the bacterial periplasm and plays an important role in oxidative protein folding. In the present study, we demonstrate the presence of XfDsbC during different stages of X. fastidiosa biofilm development. XfDsbC was not detected during X. fastidiosa planktonic growth; however, after administering a sublethal copper shock, we observed an overexpression of XfDsbC that also occurred during planktonic growth. These results suggest that X. fastidiosa can use XfDsbC in vivo under oxidative stress conditions similar to those induced by copper. In addition, using dynamic light scattering and small-angle X-ray scattering, we observed that the oligomeric state of XfDsbC in vitro may be dependent on the redox environment. Under reducing conditions, XfDsbC is present as a dimer, whereas a putative tetrameric form was observed under nonreducing conditions. Taken together, our findings demonstrate the overexpression of XfDsbC during biofilm formation and provide the first structural model of a bacterial disulfide isomerase in solution. Structured digital abstract XfDsbC and XfDsbC bind by x ray scattering (View Interaction: 1, 2) XfDsbC and XfDsbC bind by molecular sieving (View interaction) XfDsbC and XfDsbC bind by comigration in non denaturing gel electrophoresis (View interaction) XfDsbC and XfDsbC bind by cross-linking study (View Interaction: 1, 2) XfDsbC and XfDsbC bind by dynamic light scattering (View Interaction: 1, 2)
Resumo:
In this report, we investigate the influence of temperature on the two-photon absorption (2PA) spectrum of all-trans-beta-carotene using the femtosecond white-light-continuum Z-scan technique. We observed that the 2PA cross-section decreases quadratically with the temperature. Such effect was modeled using a three-energy-level diagram within the sum-over-essential states approach, assuming temperature dependencies to the transition dipole moment and refractive index of the solvent. The results show that the transition dipole moments from ground to excited state and between the excited states, which governed the two-photon matrix element, have distinct behaviors with the temperature. The first one presents a quadratic dependence, while the second exhibits a linear dependence. Such effects were attributed mainly to the trans -> cis thermal interconversion process, which decreases the effective conjugation length, contributing to diminishing the transition dipole moments and, consequently, the 2PA cross-section.
Resumo:
The kinetics of the homogeneous acylation of microcrystalline cellulose, MCC, with carboxylic acid anhydrides with different acyl chain-length (Nc; ethanoic to hexanoic) in LiCl/N,N-dimethylacetamide have been studied by conductivity measurements from 65 to 85 A degrees C. We have employed cyclohexylmethanol, CHM, and trans-1,2-cyclohexanediol, CHD, as model compounds for the hydroxyl groups of the anhydroglucose unit of cellulose. The ratios of rate constants of acylation of primary (CHM; Prim-OH) and secondary (CHD; Sec-OH) groups have been employed, after correction, in order to split the overall rate constants of the reaction of MCC into contributions from the discrete OH groups. For the model compounds, we have found that k((Prim-OH))/k((Sec-OH)) > 1, akin to reactions of cellulose under heterogeneous conditions; this ratio increases as a function of increasing Nc. The overall, and partial rate constants of the acylation of MCC decrease from ethanoic- to butanoic-anhydride and then increase for pentanoic- and hexanoic anhydride, due to subtle changes in- and compensations of the enthalpy and entropy of activation.