933 resultados para Iridium trapping
Resumo:
The thrust towards energy conservation and reduced environmental footprint has fueled intensive research for alternative low cost sources of renewable energy. Organic photovoltaic cells (OPVs), with their low fabrication costs, easy processing and flexibility, represent a possible viable alternative. Perylene diimides (PDIs) are promising electron-acceptor candidates for bulk heterojunction (BHJ) OPVs, as they combine higher absorption and stability with tunable material properties, such as solubility and position of the lowest unoccupied molecular orbital (LUMO) level. A prerequisite for trap free electron transport is for the LUMO to be located at a level deeper than 3.7 eV since electron trapping in organic semiconductors is universal and dominated by a trap level located at 3.6 eV. Although the mostly used fullerene acceptors in polymer:fullerene solar cells feature trap-free electron transport, low optical absorption of fullerene derivatives limits maximum attainable efficiency. In this thesis, we try to get a better understanding of the electronic properties of PDIs, with a focus on charge carrier transport characteristics and the effect of different processing conditions such as annealing temperature and top contact (cathode) material. We report on a commercially available PDI and three PDI derivatives as acceptor materials, and its blends with MEH-PPV (Poly[2-methoxy 5-(2-ethylhexyloxy)-1,4-phenylenevinylene]) and P3HT (Poly(3-hexylthiophene-2,5-diyl)) donor materials in single carrier devices (electron-only and hole-only) and in solar cells. Space-charge limited current measurements and modelling of temperature dependent J-V characteristics confirmed that the electron transport is essentially trap-free in such materials. Different blend ratios of P3HT:PDI-1 (1:1) and (1:3) show increase in the device performance with increasing PDI-1 ratio. Furthermore, thermal annealing of the devices have a significant effect in the solar cells that decreases open-circuit voltage (Voc) and fill factor FF, but increases short-circuit current (Jsc) and overall device performance. Morphological studies show that over-aggregation in traditional donor:PDI blend systems is still a big problem, which hinders charge carrier transport and performance in solar cells.
Resumo:
This work demonstrates the role of defects generated during rapid thermal annealing of pulsed laser deposited ZnO/Al2O3 multilayer nanostructures in presence of vacuum at different temperatures (Ta) (500–900 C) on their electrical conductance and optical characteristics. Photoluminescence (PL) emissions show the stronger green emission at Ta 600 C and violet–blue emission at TaP800 C, and are attributed to oxygen vacancies and zinc related defects (zinc vacancies and interstitials) respectively. Current–voltage (I–V) characteristics of nanostructures with rich oxygen vacancies and zinc related defects display the electroforming free resistive switching (RS) characteristics. Nanostructures with rich oxygen vacancies exhibit conventional and stable RS behavior with high and low resistance states (HRS/LRS) ratio 104 during the retention test. Besides, the dominant conduction mechanism of HRS and LRS is explained by trap-controlled-space-charge limited conduction mechanism, where the oxygen vacancies act as traps. On the other hand, nanostructures with rich zinc related defects show a diode-like RS behavior. The rectifying ratio is found to be sensitive on the zinc interstitials concentration. It is assumed that the rectifying behavior is due to the electrically formed interface layer ZnAl2O4 at the Zn defects rich ZnO crystals – Al2O3 x interface and the switching behavior is attributed to the electron trapping/de-trapping process at zinc vacancies.
Resumo:
In Brazilian Amazonia, 20 genera and more than 200 species of polistine wasps are recorded. Local faunas with 70 to 80 species are usually found in non floodable forest environments. However, a variety of wetlands exist in the region, the most expressive in surface area being varzea systems. In this paper, information is presented on polistines from two areas of wetlands in the Brazilian states of Amazonas and Amapá. These are reciprocally compared and also with nearby terra firme locations. Collecting methods consisted of active search for nests, handnetting and automatic trapping of individuals. Forty-six species of 15 genera were collected in Mamirauá, AM, most being widespread common wasps. However, five species deserve special mention in virtue of rarity and/or restricted distribution: Metapolybia rufata, Chartergellus nigerrimus, Chartergellus punctatior, Clypearia duckei, and Clypearia weyrauchi. In Região dos Lagos, AP, 31 species of 9 genera were collected, nearly all being common species with the exception of some Polistes, like P. goeldi and P. occipitalis. Even though less rich than vespid faunas from terra firme habitats, the Mamirauá fauna proved to be quite expressive considering limitations imposed by the hydrological regime. In Região dos Lagos, however, the very low diversity found was below the worst expectations. The virtual absence of otherwise common species in environments like tidal varzea forests along Araguari River is truly remarkable. The causes of low diversity are probably related to isolation and relative immaturity of the region, allied to strong degradation of forested habitats.
Resumo:
In recent years, there has been an increasing number of studies on carrion fly communities due to their medical importance and as a consequence of the large number of studies on forensic entomology. Surprisingly few studies have adressed with the asynantropic flies of the Amazon, and none were done in Colombia. A faunistic study of asynantropic flies of the families Calliphoridae, Sarcophagidae, Muscidae and Fannidae in three different landscapes of the Colombian Amazon is presented, trapping effectiveness is assessed, and the first record of Mesembrinella batesi (Aldrich, 1922) and Fannia femoralis (Stein, 1897) from Colombia is reported.
Resumo:
The effectiveness of ecological researches on small mammals strongly depends on trapping techniques to survey communities and populations accurately. The main goal of this study was to assess the efficiency of three types of traps (Sherman, Tomahawk and Pitfall) to capture non-volant small mammals. We installed traps in 22 forest fragments in the southern Brazilian Amazonia. We captured 873 individuals belonging to 21 species; most of the individuals (N = 369) and species (N = 19) were trapped using Pitfalls, followed by Shermans (N = 271 individuals; N = 15 species) and Tomahawks (N = 233 individuals; N = 15 species). Pitfalls trapped a richer community subset of small mammals than the two other types of traps, and a more abundant community subset than Tomahawks. Proechimys sp. was the most abundant species trapped (N = 125) and Tomahawk was the most efficient type of trap to capture this species (N = 97 individuals). Neacomys spinosus and Marmosops bishopi were more trapped in Pitfalls (N = 92 and 100 individuals, respectively) than Shermans and Tomahawks. Monodelphis glirina was more trapped in Shermans and Pitfalls than Tomahawks. Species composition trapped using the three types of traps were distinct. Pitfalls captured a more distinct subset of the small mammal community than the two other live traps. We recommend the association of the three types of traps to reach a more comprehensive sampling of the community of small mammals. Thus, as stated by previous studies, we also recommend the complementary use of Shermans, Tomahawks and Pitfalls to account for a thorough sampling of the whole small mammal community in researches conducted in the tropical forests of Amazonia.
Resumo:
The temporal variability of benthic macrofauna on Cassino beach, southernmost Brazil, was studied for a period of one year (June 2004 to May 2005) based on monthly sampling. Three sites were selected distant 50m from each other. At each site, 3 transects were established, 2m equidistant from one another. Each transect extended from the base of the primary dunes to the inner surf zone at approximately 1m in depth, with 7 or 8 sampling levels. Within transects, the distance between the levels was 20m until the upper swash zone, from which distance was 10m until the 1-meter isobath. The temporal variation in the abundance of benthic macrofauna observed in the present study can be attributed to (1) the positive effects of the recruitment peaks and migration of particular species to the swash zone and (2) negative effects of the migration of some species to deeper waters, as well (3) as mortality through natural causes (stranding and action of predators) and (4) human causes (harvesting and vehicle transit). We attribute the expressive abundance increase of benthic macrofauna to recruitment. The stranding, that is, the trapping of the organisms on the upper parts of the beach, is likely the main cause of abrupt drops in benthic macrofauna abundance.
Resumo:
In order to evaluate the efficiency of different mammalian survey methods, we compared traditional sampling techniques (use of camera-traps on roads and artificial trails, track censuses, and direct field visualization) with an alternative sampling design (camera-traps positioned in natural areas such as natural trails and shelters). We conducted the study in a deciduous Atlantic-Forest park in southern Brazil, and additionally compared our results with a previous intensive study carried out in the same area. Our considerably smaller sampling effort (example: 336 trap.day for our camera-traps versus 2,154 trap.day for the earlier study) registered the presence of 85% of the local known species, with camera-traps being 68% efficient. Moreover, shelter camera-traps revealed a different species composition regarding most of other sampling methods. This sampling strategy involving natural forest sites was therefore able to effectively optimize the chances of evaluating species composition in a shorter period, especially with respect to lower-density and cryptic species, as well as to detect species that avoid open, disturbed sites such as roads and man-made forest trails.
Resumo:
Estudi elaborat a partir d’una estada al National Research Institute for Food and Nutrition, Itàlia, des de novembre del 2006 fins a febrer del 2007. La capacitat antioxidant total (TAC) en plasma pot ser un bon biomarcador del estat antioxidant dels humans. Prenent les mostres de dos projectes diferents de recerca s’ha mesurat la TAC mitjançant el FRAP (ferric reductant antioxidant potencial) i el TRAP (total radical-trapping antioxidant parameter ). D’una banda el PREDIMED, és un estudi prospectiu aleatoritzat i controlat, amb una cohort d’ individus sense patología vascular coneguda, però amb un alt risc de patir-la. En aquest es valora la utilitat d’una intervenció dietética del tipus mediterrània en la prevenció primària de la malaltia cardiovascular. L’altre és el de biodisponibilitat en humans dels metabòlits dels polifenols presents en els solubles de cacau, un estudi crònic (28 dies) on es vol mesurar la influència de la llet en l’absorció dels polifenols del cacau, en voluntaris amb elevat risc de sofrir patologia cardiovascular.
Resumo:
Twenty one opossums (Didelphis marsupialis) from disturbed primary forest in the vicinity of Manaus, and seven from an isolated island of secondary vegetation within the city of Manaus, were examined for the presence of Leishmania. Of the opossums from the primary forests, 13 (61.9%) were found to be positive for Leishmania braziliensis guyanenesis. One additional opossum was found to be positive for Le. mexicana amazonensis. A simple and economical trapping technique for opossums is presented here, and a control method in special cases is suggested.
Resumo:
We have designed a vaccine model based on induction of cell-mediated immunity and shown that it protects mice against Schistosoma mansoni infection. Mice are immunized by intradermal injection with schistosome antigens plus BCG. Resistance is dependent on the route of antigen presentation and the adjuvant chosen. The pattern of resistance correlates with sensitization of T lymphocytes for production of gamma interferon, a macrophage activating lymphokine that stimulates the cellular effector mechanism of protection. Purified schistosome paramyosin, a muscle cell component present in soluble parasite antigenic preparations, is immunogenic for T lymphocytes and induces resistance when given intradermally with BCG. It is likely that this protein, and possibly other soluble molecules that are released by the parasites of a challenge infection, induce a cellular inflammatory response resulting in larval trapping and/or killing by activated macrophages. These results verify the feasibility of a vaccine against schistosomiasis based on induction of cell-mediated immune resistance mechanisms.
Resumo:
Crocidura russula is restricted to the vicinity of human dwellings in the northern parts of its range and in the mountain regions of Central and Western Europe. In order to better understand the causes of such a distribution, a population was studied in a rural mountain habitat (750 m above sea level), where the species was found almost exclusively in the neighbourhood of human dwellings. The study was conducted on a 2000 m2 area, over a period of 20 months, by live-trapping and radioactive tracking. The abundance, the local distribution and the behaviour of the shrews vary greatly throughout the year. In summer, they chiefly inhabit areas with a dense herbaceous cover or shruby vegetation; they are mainly active at ground level, in the litter. In autumn, changes in the environmental conditions (lowering of temperatures, subsidence of the herbaceous vegetation, presence of snow) create important energetic problems. At that time, the shrews gradually become more active around and inside compost-heaps and buildings. The microclimate of such environments is mild and prey are numerous. The winter population is reduced (reaching its lowest level in late winter) and consists only of shrews frequenting these sites. The observed spatial distribution is the result of the energetic dependence of the wintering shrews on human dwellings and their surroundings. This dependence is probably related to the physiological characteristics of the species. In the prospected region, Crocidura russula is the only shrew which regularly takes advantage of man-made habitats; the maintenance of the species in the rural mountain enviroment is probably favoured by the social organization of the populations in winter. The other native Soricids are observed only occasionaly int he neighbourhood of human dwellings.
Resumo:
An African oxalogenic tree, the iroko tree (Milicia excelsa), has the property to enhance carbonate precipitation in tropical oxisols, where such accumulations are not expected due to the acidic conditions in these types of soils. This uncommon process is linked to the oxalate-carbonate pathway, which increases soil pH through oxalate oxidation. In order to investigate the oxalate-carbonate pathway in the iroko system, fluxes of matter have been identified, described, and evaluated from field to microscopic scales. In the first centimeters of the soil profile, decaying of the organic matter allows the release of whewellite crystals, mainly due to the action of termites and saprophytic fungi. In addition, a concomitant flux of carbonate formed in wood tissues contributes to the carbonate flux and is identified as a direct consequence of wood feeding by termites. Nevertheless, calcite biomineralization of the tree is not a consequence of in situ oxalate consumption, but rather related to the oxalate oxidation inside the upper part of the soil. The consequence of this oxidation is the presence of carbonate ions in the soil solution pumped through the roots, leading to preferential mineralization of the roots and the trunk base. An ideal scenario for the iroko biomineralization and soil carbonate accumulation starts with oxalatization: as the iroko tree grows, the organic matter flux to the soil constitutes the litter, and an oxalate pool is formed on the forest ground. Then, wood rotting agents (mainly termites, saprophytic fungi, and bacteria) release significant amounts of oxalate crystals from decaying plant tissues. In addition, some of these agents are themselves producers of oxalate (e.g. fungi). Both processes contribute to a soil pool of "available" oxalate crystals. Oxalate consumption by oxalotrophic bacteria can then start. Carbonate and calcium ions present in the soil solution represent the end products of the oxalate-carbonate pathway. The solution is pumped through the roots, leading to carbonate precipitation. The main pools of carbon are clearly identified as the organic matter (the tree and its organic products), the oxalate crystals, and the various carbonate features. A functional model based on field observations and diagenetic investigations with δ13C signatures of the various compartments involved in the local carbon cycle is proposed. It suggests that the iroko ecosystem can act as a long-term carbon sink, as long as the calcium source is related to non-carbonate rocks. Consequently, this carbon sink, driven by the oxalate carbonate pathway around an iroko tree, constitutes a true carbon trapping ecosystem as defined by ecological theory.
Resumo:
Aedes albifasciatus is an important common mosquito in Central Argentina. Its a confirmed vector of the Western Equine Encephalitis and is responsible for loss of milk production in dairy cattle during peak populations. This paper reports the flight activity pattern of Ae. albifasciatus for different seasons, in the southern coast of the Mar Chiquita Lake (Central Argentina). Data were collected by sampling two sites between 1992 and 1993 with CDC traps and human-bait captures. Adult mosquito population density, estimated by CDC trapping and human-bait, were highly correlated. However, when compared to other species, the proportion of Ae. albifasciatus was higher in human-bait collections. Adult female populations were active only when temperature were higher than 6§C. Two daily biting peaks were observed (dusk and dawn) during the spring, summer and autumn, and only one peak during winter (around 15:00 pm). Adult abundance was significantly correlated (R²= 0.71; p<0.01) with temperature and illumination.
Resumo:
A gradual increase in Earth's surface temperatures marking the transition from the late Paleocene to early Eocene (55.8±0.2Ma), represents an extraordinary warming event known as Paleocene-Eocene Thermal Maximum (PETM). Both marine and continental sedimentary records during this period reveal evidences for the massive injection of isotopically light carbon. The carbon dioxide injection from multiple potential sources may have triggered the global warming. The importance of the PETM studies is due to the fact that the PETM bears some striking resemblances to the human-caused climate change unfolding today. Most notably, the culprit behind it was a massive injection of heat-trapping greenhouse gases into the atmosphere and oceans, comparable in volume to what our persistent burning of fossil fuels could deliver in coming centuries. The exact knowledge of what went on during the PETM could help us to foresee the future climate change. The response of the oceanic and continental environments to the PETM is different. Many factors might control the response of the environments to the PETM such as paleogeography, paleotopography, paleoenvironment, and paleodepth. To better understand the mechanisms triggering PETM events, two different environments were studied: 1) shallow marine to inner shelf environment (Wadi Nukhul, Sinai; and the Dababiya GSSP, Luxor, Egypt), and 2) terrestrial environments (northwestern India lignite mines) representing wetland, and fluvial environments (Esplugafreda, Spain) both highlighting the climatic changes observed in continental conditions. In the marine realm, the PETM is characterized by negative ö13Ccar and ô13Corg excursions and shifts in Ô15N to ~0%o values above the P/E boundary and persisting along the interval suggesting a bloom and high production of atmospheric N2-fixers. Decrease in carbonate contents could be due to dissolution and/or dilution by increasing detrital input. High Ti, K and Zr and decreased Si contents at the P/E boundary indicate high weathering index (CIA), which coincides with significant kaolinite input and suggests intense chemical weathering under humid conditions at the beginning of the PETM. Two anoxic intervals are observed along the PETM. The lower one may be linked to methane released from the continental shelf with no change in the redox proxies, where the upper anoxic to euxinic conditions are revealed by increasing U, Mo, V, Fe and the presence of small size pyrite framboids (2-5fim). Productivity sensitive elements (Cu, Ni, and Cd) show their maximum concentrated within the upper anoxic interval suggesting high productivity in surface water. The obtained data highlight that intense weathering and subsequent nutrient inputs are crucial parameters in the chain of the PETM events, triggering productivity during the recovery phase. In the terrestrial environments, the establishment of wetland conditions and consequence continental climatic shift towards more humid conditions led to migration of modern mammals northward following the extension of the tropical belts. Relative ages of this mammal event based on bio-chemo- and paleomagnetic stratigraphy support a migration path originating from Asia into Europe and North America, followed by later migration from Asia into India and suggests a barrier to migration that is likely linked to the timing of the India-Asia collision. In contrast, at Esplugafereda, northeastern Spain, the terrestrial environment reacted differently. Two significant S13C shifts with the lower one linked to the PETM and the upper corresponding to the Early Eocene Thermal Maximum (ETM2); 180/160 paleothermometry performed on two different soil carbonate nodule reveal a temperature increase of around 8°C during the PETM. The prominent increase in kaolinite content within the PETM is linked to increased runoff and/or weathering of adjacent and coeval soils. These results demonstrate that the PETM coincides globally with extreme climatic fluctuations and that terrestrial environments are very likely to record such climatic changes. - La transition Paléocène-Eocène (55,8±0,2 Ma) est marquée par un réchauffement extraordinaire communément appelé « Paleocene-Eocene Thermal Maximum » (PETM). Les données géochimiques caractérisant les sédiments marins et continentaux de cette période indiquent que ce réchauffement a été déclenché par une augmentation massive de CO2 lié à la déstabilisation des hydrates de méthane stockés le long des marges océaniques. L'étude des événements PETM constitue donc un bon analogue avec le réchauffement actuel. Le volume de CO2 émis durant le PETM est comparable avec le CO2 lié à l'activité actuelle humaine. La compréhension des causes du réchauffement du PETM peut être cruciale pour prévoir et évaluer les conséquences du réchauffement anthropogénique, en particulier les répercussions d'un tel réchauffement sur les domaines continentaux et océaniques. De nombreux facteurs entrent en ligne de compte dans le cas du PETM, tels que la paléogéographie, la paléotopographie et les paléoenvironnement. Pour mieux comprendre les réponses environnementales aux événements du PETM, 2 types d'environnements ont été choisis : (1) le domaine marin ouvert mais relativement peu profond (Wadi Nukhul. Sinai, Dababiya, Luxor, Egypte), (2) le milieu continental marécageux humide (mines de lignite, Inde) et fluviatile, semi-aride (Esplugafreda, Pyrénées espagnoles). Dans le domaine marin, le PETM est caractérisé par des excursions négatives du ô13Ccar et ô13Corg et un shift persistant des valeurs de 815N à ~ 0 %o indiquant une forte activité des organismes (bactéries) fixant l'azote. La diminution des carbonates observée durant le PETM peut-être due à des phénomènes de dissolution ou une augmentation des apports terrigènes. Des taux élevés en Ti, K et Zr et une diminution des montants de Si, reflétés par des valeurs des indices d'altération (CIA) qui coïncident avec une augmentation significative des apports de kaolinite impliquent une altération chimique accrue, du fait de conditions plus humides au début du PETM. Deux événements anoxiques globaux ont été mis en évidence durant le PETM. Le premier, situé dans la partie inférieur du PETM, serait lié à la libération des hydrates de méthane stockés le long des talus continentaux et ne correspond pas à des variations significatives des éléments sensibles aux changements de conditions redox. Le second est caractérisé par une augmentation des éléments U, Mo, V et Fe et la présence de petit framboids de pyrite dont la taille varie entre 2 et 5pm. Le second épisode anoxique est caractérisé par une forte augmentation des éléments sensibles aux changements de la productivité (Cu, Ni et Co), indiquant une augmentation de la productivité dans les eaux de surface. Les données obtenues mettent en évidence le rôle crucial joué par l'altération et les apports en nutriments qui en découlent. Ces paramètres sont cruciaux pour la succession des événements qui ont conduit au PETM, et plus particulièrement l'augmentation de la productivité dans la phase de récupération. Durant le PETM, le milieu continental est caractérisé par l'établissement de conditions humides qui ont facilité voir provoqué la migration des mammifères modernes qui ont suivi le déplacement de ces ceintures climatiques. L'âge de cette migration est basé sur des arguments chimiostratigraphiques (isotopes stables), biostratigraphiques et paléomagnétiques. Les données bibliographiques ainsi que celles que nous avons récoltées en Inde, montrent que les mammifères modernes ont d'abord migré depuis l'Asie vers l'Europe, puis dans le continent Nord américain. Ces derniers ne sont arrivés en Inde que plus tardivement, suggérant que le temps de leur migration est lié à la collision Inde-Asie. Dans le Nord-Est de l'Espagne (Esplugafreda), la réponse du milieu continental aux événements PETM est assez différente. Comme en Inde, deux excursions signicatives en ô13C ont été observées. La première correspond au PETM et la seconde est corrélée avec l'optimum thermique de l'Eocène précoce (ETM2). Les isotopes stables de l'oxygène mesurés 2 différents types de nodules calcaires provenant de paléosols suggère une augmentation de 10°C pendant le PETM. Une augmentation simultanée des taux de kaolinite indique une intensification de l'altération chimique et/ou de l'érosion de sols adjacents. Ces résultats démontrent que le PETM coïncide globalement avec des variations climatiques extrêmes qui sont très aisément reconnaissables dans les dépôts continentaux.
Resumo:
New-variant Creutzfeldt-Jakob disease and scrapie are typically initiated by extracerebral exposure to the causative agent, and exhibit early prion replication in lymphoid organs. In mouse scrapie, depletion of B-lymphocytes prevents neuropathogenesis after intraperitoneal inoculation, probably due to impaired lymphotoxin-dependent maturation of follicular dendritic cells (FDCs), which are a major extracerebral prion reservoir. FDCs trap immune complexes with Fc-gamma receptors and C3d/C4b-opsonized antigens with CD21/CD35 complement receptors. We examined whether these mechanisms participate in peripheral prion pathogenesis. Depletion of circulating immunoglobulins or of individual Fc-gamma receptors had no effect on scrapie pathogenesis if B-cell maturation was unaffected. However, mice deficient in C3, C1q, Bf/C2, combinations thereof or complement receptors were partially or fully protected against spongiform encephalopathy upon intraperitoneal exposure to limiting amounts of prions. Splenic accumulation of prion infectivity and PrPSc was delayed, indicating that activation of specific complement components is involved in the initial trapping of prions in lymphoreticular organs early after infection.