646 resultados para Ionic radius
Resumo:
This paper develops a framework for the interpretation of ionic insertion/deinsertion reactions in an aqueous environment taking place in transition-metal hexacyanoferrates of the general formula KhFek3+ [Fe2+ (CN)(6)](l)center dot mH(2)O, also called Prussian Blue. Three different processes were fully separated in the electrochemistry of these films. It was clearly identified that one of these electrochemical processes involves the insertion/deinsertion of H3O+ (hydrated protons) through the channels of the KhFek3+ [Fe2+ (CN)(6)](l) center dot mH(2)O structure to reach the film electroneutrality during the electron transfer between Everitt's Salt and Prussian Blue. The other electrochemical processes involve K+ or H+ (proton) exchange through the water crystalline structure existing in the channels of the KhFek3+ [Fe2+(CN)(6)](l)center dot mH(2)O structure.
Resumo:
PLZT thin films were prepared by a dip-coating process using Pechini's method. The PLZT solution was obtained from the mixture of the cation solutions. The viscosity of the solution was adjusted in the range of 20-40 cP, while the ionic concentration was adjusted in the range of 0.1 and 0.2 M. PLZT solutions were deposited on Si (1 0 0) substrate with withdrawal speed at 5 mm/min. The coated substrates were thermally treated with heating rate of 1 degreesC/min up to 300 and 5 degreesC/ min up to 650 degreesC in order to obtain homogeneous and crack free films. The influence of viscosity and ionic concentration on crystallization and morphology of PLZT (9/65/35) thin film will be discussed. (C) 2001 Elsevier B.V. B.V. All rights reserved.
Resumo:
Complex electro-optical analysis is a very useful approach to separate different kinetic processes that occur during ionic insertion reactions in electrochromic oxide materials. In this paper, we use this type of combined technique to investigate ionic and optical changes in different oxide host systems, i.e., in two oxide hosts, specifically WO3 and Nb2O5. A comparison of their electro-optical responses revealed the presence of an ionic trapping contribution to the kinetics of the coloring sites, which was named here as coloring ionic trapping state. As expected, this coloring trapping process is slower in Nb2O5 since the reduction potential of Nb2O5 is more negative (more energy is needed for a higher degree of coloration). A phenomenological solid-state model that encompasses homogeneous charge transfer and valence trapping was proposed to explain the coloring ionic trapping process. Basically the model is able to explain how ionic dynamics at low frequency region, i.e., the slower kinetic step, controls the coloring kinetics, i.e., how it is capable to regulate the coloring rates.Optical transient analyses demonstrated the possibility of the presence of more than one coloring ionic trap, indicating the complexity of the processes involved in coloration phenomenon in metal oxide host systems. (C) 2008 Published by Elsevier Ltd.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
OBJETIVO: Investigar a influência de Proteínas Morfogenéticas Ósseas de origem bovina (bBMPs) ligadas a hidroxiapatita mais colágeno na consolidação de fraturas instáveis do rádio. MÉTODOS: em 15 coelhos com aproximadamente 5,5 meses de idade e peso médio de 3,5kg foi realizada uma fratura transversa na porção média da diáfise do rádio de ambos os membros. Na fratura do rádio direito foi aplicada mistura de bBMPs ligadas à hidroxiapatita (bBMP-HA) e colágeno bovino como aglutinante e na do rádio esquerdo, considerada controle, nenhum tratamento foi usado. Os coelhos (cinco por período) foram submetidos à eutanásia aos 30, 60 e 90 dias após a cirurgia para realização do processamento histológico e análise microscópica. RESULTADOS: A análise histológica descritiva revelou que a consolidação foi similar para os membros tratado e controle. Pela análise histomorfométrica, a área de novo osso foi em média 867442,16 mm², 938743.00 mm² e 779621,06 mm² para os membros controles e 841118,47 mm², 788038,76mm² e 618587,24 mm² para os membros tratados, aos 30, 60 e 90 dias, respectivamente. Desta forma, aos 60 dias de pós-operatório a área de novo osso foi 12.17% maior no membro tratado com bBMP-HA/colágeno em relação ao membro controle (p<0.05, teste de Tukey). em ambos os membros a área de novo osso aumentou durante o período experimental até a total consolidação da fratura. CONCLUSÃO: Baseado nos resultados obtidos foi possível concluir que a mistura de bBMP-HA/colágeno induziu pequena, porém significante melhora na consolidação da fratura.
Resumo:
The analytical solution of the Poisson-Boltzmann equation in an electrolyte with four ionic species (2:2:1:1), in the presence of a charged planar membrane or surface is presented. The function describing the mean electrical potential provides a convenient description that helps the understanding of electrical processes of biological interest.
Resumo:
The conditionals (K-ps) and thermodynamics (K-ps(o)) solubility products of mercurous acetate have been determined, in aqueous solution, at 25 degrees C and ionic strength (I) comprised between 0.300 and 3.000 mol/L (NaClO4). The investigation was carried out potentiometrically by using a second class electrodes which responds to acetate ions. The values obtained for [pK(ps) (I)] were: 9.49+/-0.08 (0.000); 9.51+/-0.08 (0.300); 9.53+/-0.08 (0.500); 9.54+/-0.08 (0.700); 9.55+/-0.09 (0.900), 9.57+/-0.09 (1.200); 9.59+/-0.10(1.500); 9.61+/-0.10 (1.800); 9.63+/-0.10 (2.100); 9.65+/-0.11 (2.400); 9.67+/-0.11 (2.700) e 9.69+/-0.12 (3.000).
Resumo:
Siloxane-polypropyleneoxide (PPO) hybrids doped with sodium perchlorate (NaClO4) obtained by the sol-gel process were prepared with two PPO molecular weights (2000 and 4000 g/mol) and two sodium concentrations such as [O]/[Na] = 4 and 15 (O being the ether-type oxygen of PPO chains). The structure of these hybrids was investigated by Na-23 nuclear magnetic resonance (NMR) and X-ray absorption spectroscopy at the sodium K-edge (1071.8 eV) whereas complex impedance spectroscopy was used to determine their ionic conductivity. Three sodium sites were determined by NMR. The conjunction of NMR and X-ray absorption results allows us to identify one site in which Na is in a NaCl structure, a second one in which Na is in contact with perchlorate anions. The third site is attributed to mobile sodium species in interaction with the polymeric chain. The relative proportion of the different sites in the materials determines the ionic conductivity of the materials at room temperature: the largest ionic conductivity is 8.9 x 10(-6) Omega(-1) cm(-1) and is observed on the material with the larger amount (at least 85%) of sites in which sodium interacts with the polymer. (C) 2002 Elsevier B.V. B.V. All rights reserved.
Resumo:
The preparation of the ZrO(2):8 mol % Y(2)O(3)/NiO (YSZ/NiO) composites by a modified liquid mixture technique is reported. Nanometric NiO particles dispersed over the yttria-stabilized zirconia (YSZ) were prepared, resulting in dense sintered specimens with no solid solution formation between the oxides. Such a feature allowed for the electrical characterization of the composites in a wide range of relative volume fraction, temperature, and oxygen partial pressure. The main results indicate that the composites have high electrical conductivity, and the transport properties in these mixed ionic-electronic (MIEC) composites are strongly dependent on the relative volume fraction of the phases, microstructure, and temperature. These parameters should hence be taken into consideration for the optimized design of MIEC composites for electrochemical applications. In this context, the composite was reduced under H(2) for the preparation of high-conductivity YSZ/Ni cermets for use as solid oxide fuel cell anode material with relatively low metal content. (c) 2005 the Electrochemical Society. [DOI:10.1149/1.2149312] All rights reserved.
Resumo:
Products from the spontaneous reaction of a long-chain arenediazonium salt, 2,6-dimethyl-4-hexadecylbenzenediazonium tetrafluoroborate(16-ArN2BF4), in aqueous micellar solutions of sodium dodecyl sulfate (SDS)? are used to estimate the local concentration of chloride and bromide ions at the micellar surface. The arenediazonium ion, 16-ArN2+, which is totally bound to the SDS micelle, reacts by rate-determining loss of N-2 to give an aryl cation that traps available nucleophiles, i,e., H2O, Cl-, and Br-, to give stable phenol, 16-ArOH, and halobenzene products, 16-ArCl and 16-ArBr, respectively. Product yields, determined by HPLC, are related to local concentrations using calibration curves obtained from independent standards. The local concentrations determined by this method are consistent with co-ion concentrations calculated, using a cell model, by numerical integration of the Poisson-Boltzmann equation (PBE) taking into account salt-induced micellar growth. The salt dependence of the intel facial concentrations of Cl- and Br- are identical. indicating no specific interactions in the interfacial co-ion compartment. PBE calculations predict that, in micellar SDS, increasing the concentration of a particular halide salt (NaX) at constant concentration of another halide (NaY) should result in an increase in the local concentrations of both co-ions. Using this chemical-trapping method, this prediction was demonstrated experimentally.
Resumo:
We have used surface tension measurements, differential scanning calorimetry (DSC), dynamic light scattering (DLS), and cryo-transmission electron microscopy (cryo-TEM) to investigate the dynamic and structural behavior of octadecyltrimethylammonium bromide (C(18)TAB) micelles in water and NaBr solution. The surface tension data for fixed C(18)TAB concentrations of 25 mM and varied NaBr additions (0-50 mM) shows that the critical micelle concentration (cmc) increases after an initial decrease at 0.5 mM NaBr. This unusual effect has been explained using results from DSC and DLS. At low salt concentrations (below ca. 25 mM) the relaxation time distribution is bimodal with a dominant fast mode due to spherical micelles. Above ca. 35 mM NaBr disklike structures are favored and the relaxation time distribution is more closely unimodal. The postulated sphere-to-disk transition is supported by cryo-TEM micrographs. A pronounced increase in the micellar effective hydrodynamic radius (R-H) is observed as the NaBr concentration is increased above about 35 mM; below 35 mM the R-H of the spherical micelles changes Little with ionic strength.
Resumo:
Electrostatic interactions govern most properties of polyelectrolyte films, as in the photoinduced bire-fringence of azo-containing polymers. In this paper we report a systematic investigation of optical storage characteristics of cast and layer-by-layer (LbL) films of poly[1 -[4-(3-carboxy-4 hydroxypheny-lazo) benzene sulfonamido]-1,2-ethanediyl, sodium salt] (PAZO). Birefringence was photoinduced faster in PAZO cast films prepared at high pHs, with the characteristic writing times decreasing almost linearly with the pH in the range between 4 and 9. This was attributed to an increased free volume for the azochromophores with the enhanced electrostatic repulsion in PAZO charged to a greater extent. In contrast, in LbL films of PAZO alternated with poly(allylamine hydrochloride) (PAH), the electrostatic interactions between the oppositely charged polymers hampered photoisomerization and molecular rearrangement, thus leading to a slower writing kinetics for highly charged PAH or PAZO.
Resumo:
Dynamic light scattering measurements have been made to elucidate changes in the coil conformation of a high molecular weight poly(ethylene oxide) (PEG) fraction when the non-ionic surfactant C(12)E(5) is present in dilute solutions. The measurements were made at 20 degrees C as functions of(a) the C(12)E(5) concentration at constant PEO concentration, (b) the PEO concentration at constant C(12)E(5) concentration, and (c) the C(12)E(5)/PEO concentration ratio. The influence of temperature on the interactions in terms of the relaxation time distributions was also examined up to the cloud point. It was found that when the C(12)E(5)/PEO weight ratio was >2 and when the temperature was >14 degrees C, the correlation functions became bimodal with well-separated components. The fast mode derives fi om individual surfactant micelles which are present in the solution at high number density. The appearance of the slow mode, which dominates the scattering, is interpreted as resulting from the formation of micellar clusters due to an excluded-volume effect when the high molar mass (M = 6 x 10(5)) PEO is added to the surfactant solution. It is shown that the micellar clusters form within the PEO coils and lead to a progressive swelling of the latter for steric reasons. The dimensions of the PEO/C(12)E(5) complex increase with increasing surfactant concentration to a value of R(H) approximate to 94 nm (R(g) approximate to 208 nm) at C-C12E5 = 3.5%. Fluorescence quenching measurements show that the average aggregation number of C(12)E(5) increases significantly on addition of the high molar mass PEG. With increasing temperature toward the cloud point the clusters increase in number density and/or become larger. The cloud point is substantially lower than that for C12E5 in water solution and is strongly dependent on the PEO concentration.