953 resultados para Ion channel-like activity


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The discovery of non-adrenergic, non-cholinergic neurotransmission in the gut and bladder in the early 1960's is described as well as the identification of adenosine 5'-triphosphate (ATP) as a transmitter in these nerves in the early 1970's. The concept of purinergic cotransmission was formulated in 1976 and it is now recognized that ATP is a cotransmitter in all nerves in the peripheral and central nervous systems. Two families of receptors to purines were recognized in 1978, P1 (adenosine) receptors and P2 receptors sensitive to ATP and adenosine diphosphate (ADP). Cloning of these receptors in the early 1990's was a turning point in the acceptance of the purinergic signalling hypothesis and there are currently 4 subtypes of P1 receptors, 7 subtypes of P2X ion channel receptors and 8 subtypes of G protein-coupled receptors. Both short-term purinergic signalling in neurotransmission, neuromodulation and neurosecretion and long-term (trophic) purinergic signalling of cell proliferation, differentiation, motility, death in development and regeneration are recognized. There is now much known about the mechanisms underlying ATP release and extracellular breakdown by ecto-nucleotidases. The recent emphasis on purinergic neuropathology is discussed, including changes in purinergic cotransmission in development and ageing and in bladder diseases and hypertension. The involvement of neuron-glial cell interactions in various diseases of the central nervous system, including neuropathic pain, trauma and ischemia, neurodegenerative diseases, neuropsychiatric disorders and epilepsy are also considered.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Lopap, found in the bristles of Lonomia obliqua caterpillar, is the first exogenous prothrombin activator that shows serine protease-like activity, independent of prothrombinase components and unique lipocalin reported to interfere with hemostasis mechanisms. To assess the action of an exogenous prothrombin activator reversing the anticoagulant and antihemostatic effect induced by low molecular weight heparin (LMWH), male New Zealand rabbits (N = 20, weighing 3.8-4.0 kg) allocated to 4 groups were anticoagulated with 1800 IU/kg LMWH (iv) over 2 min, followed by iv administration of saline (SG) or recombinant Lopap (rLopap) at 1 µg/kg (LG1) or 10 µg/kg (LG10), 10 min after the injection of LMWH, in a blind manner. Control animals (CG) were treated only with saline. The action of rLopap was assessed in terms of activated partial thromboplastin time (aPTT), prothrombin fragment F1+2, fibrinogen, and ear puncture bleeding time (BT) at 5, 10, 15, 17, 20, 30, 40, 60, and 90 min after initiation of LMWH infusion. LG10 animals showed a decrease of aPTT in more than 50% and BT near to normal baseline. The level of prothrombin fragment F1+2 measured by ELISA had a 6-fold increase with rLopap treatment (10 µg/kg) and was inversely proportional to BT in LMWH-treated animals. Thus, Lopap, obtained in recombinant form using E. coli expression system, was useful in antagonizing the effect of LMWH through direct prothrombin activation, which can be a possible strategy for the reversal of bleeding and anticoagulant events.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Le canal calcique de type L, Cav1.2, joue un rôle clé dans le couplage excitation-contraction des myocytes ventriculaires. Il a été montré que la sous-unité Cavα1 était sujette à l’épissage alternatif et que ce phénomène pouvait mener à une protéine tronquée en C-terminal au niveau de l’exon 45 (Liao, Yong et al. 2005). D’autres groupes ont étudié différentes délétions au niveau de l’extrémité C-terminale (De Jongh, Warner et al. 1991; Gao, Cuadra et al. 2001). Les courants mesurés dans la configuration cellule entière, était significativement plus grands que le canal « pleine longueur ». Nous avons décidé de tester certaines de ces délétions (ΔC2030, ΔC1935, ΔC1856, ΔC1733, ΔC1700) en présence ou en absence de la sous-unité auxiliaire Cavβ3, susceptible d’interagir avec l’extrémité C-terminale de la sous-unité Cavα1 par l’intermédiaire de son domaine SH3 (Lao, Kobrinsky et al. 2008). Les résultats obtenus dans les ovocytes de Xénope ont mis en évidence que les sous-unités Cavα1.2 tronquées montraient des courants globaux plus élevés que le canal « pleine longueur » en présence de la sous-unité auxiliaire Cavβ3 et que les sous-unités Cavα1.2 tronquées donnaient des courants en absence de la sous-unité Cavβ3 contrairement à la sous-unité Cavα1.2 « pleine longueur ». Afin de vérifier si l’augmentation des courants macroscopiques était le résultat d’une augmentation du nombre de sous-unités Cavα1.2 à la membrane, nous avons choisi de quantifier la fluorescence spécifiquement due à cette sous-unité en utilisant la méthode de cytométrie de flux (FACS : « Fluorescence Activated Cell Sorting »). L’épitope HA a été inséré dans une région extracellulaire de la sous-unité Cavα1 du canal calcique Cav1.2 et un anticorps anti-HA couplé au FITC (« Fluorescein IsoThioCyanate ») a été utilisé pour observer la fluorescence. Nos résultats confirment que la sous-unité Cavα1-HA du canal calcique Cav1.2, s’exprime à la membrane plasmique en présence de la sous-unité auxiliaire Cavβ3, et qu’en absence de celle-ci, ne s’exprime que peu ou pas à la membrane. Les mêmes résultats ont été obtenus pour les trois délétions testées dans les mêmes conditions soit Cavα1.2-HA ΔC1935, Cavα1.2-HA ΔC1856 et Cavα1.2-HA ΔC1733. Ensemble, ces résultats suggèrent que l’augmentation des courants macroscopiques observés après une délétion partielle du C-terminal n’est pas causée par une augmentation du nombre de protéines Cavα1.2 à la membrane.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Les canaux potassiques dépendants du voltage sont formés de quatre sous-unités, chacune possédant six segments transmembranaires (S1-S6) et une boucle (p-loop) qui se trouve entre le cinquième et le sixième segment au niveau du pore. Il est connu que le segment senseur du voltage (S1-S4) subit un mouvement lorsque le potentiel membranaire change. Pour ouvrir le canal, il est nécessaire de transférer l'énergie du senseur du voltage (généré par le mouvement des charges positives de S4) au pore. Le mécanisme exact de ce couplage électromécanique est encore sous étude. Un des points de liaison entre le senseur de voltage et le pore est le lien physique fait par le segment S4-S5 (S45L). Le but de cette étude est de déterminer l'influence de la flexibilité du segment S45L sur le processus de couplage. Dans le S45L, trois glycines sont distribuées dans des positions différentes. Elles sont responsables de la flexibilité des hélices-alpha. Ces glycines (mais pas leurs positions exactes) sont conservées pour tous les canaux potassiques dépendants de potentiel. En utilisant la technique de mutagènes dirigé, la glycine a été remplacée dans chacune de ces différentes positions par une alanine et dans une deuxième étape, par une proline (pour introduire un angle dans l'hélice). Pour étudier le comportement des canaux dans cette nouvelle conformation, on a appliqué la technique de « patch clamp » pour déterminer les effets lors de l'ouverture du pore (courant ionique). Avec le « cut-open oocyte voltage-clamp », nous avons étudié les effets sur le mouvement du senseur de voltage (courant “gating”) et la coordination temporelle avec l'ouverture du pore (courant ionique). Les données ont montré qu’en réduisant la flexibilité dans le S45L, il faut avoir plus d'énergie pour faire ouvrir le canal. Le changement pour une proline suggère que le mouvement du senseur est indépendant du pore pendant l'ouverture du canal.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mémoire numérisé par la Division de la gestion de documents et des archives de l'Université de Montréal

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The binding specificities of a panel of avian influenza virus subtype H5 hemagglutinin (RA) proteins bearing mutations at key residues in the receptor binding site were investigated. The results demonstrate that two simultaneous mutations in the receptor binding site resulted in H5 RA binding in a pattern similar to that shown by human viruses. Coexpression of the ion channel protein, M2, from most avian and human strains tested protected H5 RA conformation during trafficking, indicating that no genetic barrier to the reassortment of the H5 surface antigen gene with internal genes of human viruses existed at this level.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Neuropathic pain may arise following peripheral nerve injury though the molecular mechanisms associated with this are unclear. We used proteomic profiling to examine changes in protein expression associated with the formation of hyper-excitable neuromas derived from rodent saphenous nerves. A two-dimensional difference gel electrophoresis ( 2D-DIGE) profiling strategy was employed to examine protein expression changes between developing neuromas and normal nerves in whole tissue lysates. We found around 200 proteins which displayed a > 1.75-fold change in expression between neuroma and normal nerve and identified 55 of these proteins using mass spectrometry. We also used immunoblotting to examine the expression of low-abundance ion channels Nav1.3, Nav1.8 and calcium channel alpha 2 delta-1 subunit in this model, since they have previously been implicated in neuronal hyperexcitability associated with neuropathic pain. Finally, S(35)methionine in vitro labelling of neuroma and control samples was used to demonstrate local protein synthesis of neuron-specific genes. A number of cytoskeletal proteins, enzymes and proteins associated with oxidative stress were up-regulated in neuromas, whilst overall levels of voltage-gated ion channel proteins were unaffected. We conclude that altered mRNA levels reported in the somata of damaged DRG neurons do not necessarily reflect levels of altered proteins in hyper-excitable damaged nerve endings. An altered repertoire of protein expression, local protein synthesis and topological re-arrangements of ion channels may all play important roles in neuroma hyper-excitability.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Physiological evidence using Infrared Video Microscopy during the uncaging of glutamate has proven the existence of excitable calcium ion channels in spine heads, highlighting the need for reliable models of spines. In this study we compare the three main methods of simulating excitable spines: Baer & Rinzel's Continuum (B&R) model, Coombes' Spike-Diffuse-Spike (SDS) model and paired cable and ion channel equations (Cable model). Tests are done to determine how well the models approximate each other in terms of speed and heights of travelling waves. Significant quantitative differences are found between the models: travelling waves in the SDS model in particular are found to travel at much lower speeds and sometimes much higher voltages than in the Cable or B&R models. Meanwhile qualitative differences are found between the B&R and SDS models over realistic parameter ranges. The cause of these differences is investigated and potential solutions proposed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Volatile anesthetics such as isoflurane and halothane have been in clinical use for many years and represent the group of drugs most commonly used to maintain general anesthesia. However, despite their widespread use, the molecular mechanisms by which these drugs exert their effects are not completely understood. Recently, a seemingly paradoxical effect of general anesthetics has been identified: the activation of peripheral nociceptors by irritant anesthetics. This mechanism may explain the hyperalgesic actions of inhaled anesthetics and their adverse effects in the airways. METHODS: To test the hypothesis that irritant inhaled anesthetics activate the excitatory ion-channel transient receptor potential (TRP)-A1 and thereby contribute to hyperalgesia and irritant airway effects, we used the measurement of intracellular calcium concentration in isolated cells in culture. For our functional experiments, we used models of isolated guinea pig bronchi to measure bronchoconstriction and withdrawal threshold to mechanical stimulation with von Frey filaments in mice. RESULTS: Irritant inhaled anesthetics activate TRPA1 expressed in human embryonic kidney cells and in nociceptive neurons. Isoflurane induces mechanical hyperalgesia in mice by a TRPA1-dependent mechanism. Isoflurane also induces TRPA1-dependent constriction of isolated bronchi. Nonirritant anesthetics do not activate TRPA1 and fail to produce hyperalgesia and bronchial constriction. CONCLUSIONS: General anesthetics induce a reversible loss of consciousness and render the patient unresponsive to painful stimuli. However, they also produce excitatory effects such as airway irritation and they contribute to postoperative pain. Activation of TRPA1 may contribute to these adverse effects, a hypothesis that remains to be tested in the clinical setting.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

TRPA1 is an excitatory ion channel expressed by a subpopulation of primary afferent somatosensory neurons that contain substance P and calcitonin gene-related peptide. Environmental irritants such as mustard oil, allicin, and acrolein activate TRPA1, causing acute pain, neuropeptide release, and neurogenic inflammation. Genetic studies indicate that TRPA1 is also activated downstream of one or more proalgesic agents that stimulate phospholipase C signaling pathways, thereby implicating this channel in peripheral mechanisms controlling pain hypersensitivity. However, it is not known whether tissue injury also produces endogenous proalgesic factors that activate TRPA1 directly to augment inflammatory pain. Here, we report that recombinant or native TRPA1 channels are activated by 4-hydroxy-2-nonenal (HNE), an endogenous alpha,beta-unsaturated aldehyde that is produced when reactive oxygen species peroxidate membrane phospholipids in response to tissue injury, inflammation, and oxidative stress. HNE provokes release of substance P and calcitonin gene-related peptide from central (spinal cord) and peripheral (esophagus) nerve endings, resulting in neurogenic plasma protein extravasation in peripheral tissues. Moreover, injection of HNE into the rodent hind paw elicits pain-related behaviors that are inhibited by TRPA1 antagonists and absent in animals lacking functional TRPA1 channels. These findings demonstrate that HNE activates TRPA1 on nociceptive neurons to promote acute pain, neuropeptide release, and neurogenic inflammation. Our results also provide a mechanism-based rationale for developing novel analgesic or anti-inflammatory agents that target HNE production or TRPA1 activation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Robotic multiwell planar patch-clamp has become common in drug development and safety programs because it enables efficient and systematic testing of compounds against ion channels during voltage-clamp. It has not, however, been adopted significantly in other important areas of ion channel research, where conventional patch-clamp remains the favored method. Here, we show the wider potential of the multiwell approach with the ability for efficient intracellular solution exchange, describing protocols and success rates for recording from a range of native and primary mammalian cells derived from blood vessels, arthritic joints and the immune and central nervous systems. The protocol involves preparing a suspension of single cells to be dispensed robotically into 4-8 microfluidic chambers each containing a glass chip with a small aperture. Under automated control, giga-seals and whole-cell access are achieved followed by preprogrammed routines of voltage paradigms and fast extracellular or intracellular solution exchange. Recording from 48 chambers usually takes 1-6 h depending on the experimental design and yields 16-33 cell recordings.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The application of antibodies to living neurones has the potential to modulate function of specific proteins by virtue of their high specificity. This specificity has proven effective in determining the involvement of many proteins in neuronal function where specific agonists and antagonists do not exist, e.g. ion channel subunits. We discuss studies where antibodies modulate functions of voltage gated sodium, voltage gated potassium, voltage gated calcium hyperpolarisation activated cyclic nucleotide (HCN gated) and transient receptor potential (TRP) channels. Ligand gated channels studied in this way include nicotinic acetylcholine receptors, purinoceptors and GABA receptors. Antibodies have also helped reveal the involvement of different intracellular proteins in neuronal functions including G-proteins as well as other proteins involved in trafficking, phosphoinositide signalling and neurotransmitter release. Some suggestions for control experiments are made to help validate the method. We conclude that antibodies can be extremely valuable in determining the functions of specific proteins in living neurones in neuroscience research.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The role of air–sea coupling in the simulation of the Madden–Julian oscillation (MJO) is explored using two configurations of the Hadley Centre atmospheric model (AGCM), GA3.0, which differ only in F, a parameter controlling convective entrainment and detrainment. Increasing F considerably improves deficient MJO-like variability in the Indian and Pacific Oceans, but variability in and propagation through the Maritime Continent remains weak. By coupling GA3.0 in the tropical Indo-Pacific to a boundary-layer ocean model, KPP, and employing climatological temperature corrections, well resolved air–sea interactions are simulated with limited alterations to the mean state. At default F, when GA3.0 has a poor MJO, coupling produces a stronger MJO with some eastward propagation, although both aspects remain deficient. These results agree with previous sensitivity studies using AGCMs with poor variability. At higher F, coupling does not affect MJO amplitude but enhances propagation through the Maritime Continent, resulting in an MJO that resembles observations. A sensitivity experiment with coupling in only the Indian Ocean reverses these improvements, suggesting coupling in the Maritime Continent and West Pacific is critical for propagation. We hypothesise that for AGCMs with a poor MJO, coupling provides a “crutch” to artificially augment MJO-like activity through high-frequency SST anomalies. In related experiments, we employ the KPP framework to analyse the impact of air–sea interactions in the fully coupled GA3.0, which at default F shows a similar MJO to uncoupled GA3.0. This is due to compensating effects: an improvement from coupling and a degradation from mean-state errors. Future studies on the role of coupling should carefully separate these effects.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cigarette smoke (CS) inhalation causes an early inflammatory response in rodent airways by stimulating capsaicin-sensitive sensory neurons that express transient receptor potential cation channel, subfamily V, member 1 (TRPV1) through an unknown mechanism that does not involve TRPV1. We hypothesized that 2 alpha,beta-unsaturated aldehydes present in CS, crotonaldehyde and acrolein, induce neurogenic inflammation by stimulating TRPA1, an excitatory ion channel coexpressed with TRPV1 on capsaicin-sensitive nociceptors. We found that CS aqueous extract (CSE), crotonaldehyde, and acrolein mobilized Ca2+ in cultured guinea pig jugular ganglia neurons and promoted contraction of isolated guinea pig bronchi. These responses were abolished by a TRPA1-selective antagonist and by the aldehyde scavenger glutathione but not by the TRPV1 antagonist capsazepine or by ROS scavengers. Treatment with CSE or aldehydes increased Ca2+ influx in TRPA1-transfected cells, but not in control HEK293 cells, and promoted neuropeptide release from isolated guinea pig airway tissue. Furthermore, the effect of CSE and aldehydes on Ca2+ influx in dorsal root ganglion neurons was abolished in TRPA1-deficient mice. These data identify alpha,beta-unsaturated aldehydes as the main causative agents in CS that via TRPA1 stimulation mediate airway neurogenic inflammation and suggest a role for TRPA1 in the pathogenesis of CS-induced diseases.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The vanilloid receptor-1 (VR1) is a heat-gated ion channel that is responsible for the burning sensation elicited by capsaicin. A similar sensation is reported by patients with esophagitis when they consume alcoholic beverages or are administered alcohol by injection as a medical treatment. We report here that ethanol activates primary sensory neurons, resulting in neuropeptide release or plasma extravasation in the esophagus, spinal cord or skin. Sensory neurons from trigeminal or dorsal root ganglia as well as VR1-expressing HEK293 cells responded to ethanol in a concentration-dependent and capsazepine-sensitive fashion. Ethanol potentiated the response of VR1 to capsaicin, protons and heat and lowered the threshold for heat activation of VR1 from approximately 42 degrees C to approximately 34 degrees C. This provides a likely mechanistic explanation for the ethanol-induced sensory responses that occur at body temperature and for the sensitivity of inflamed tissues to ethanol, such as might be found in esophagitis, neuralgia or wounds.