887 resultados para Invasion Paradox
Resumo:
The taxonomic status of Coptotermes gestroi (Wasmann), C. havilandi Holmgren, C. travians (Haviland) and C. borneensis Oshima (Isoptera: Rhinotermitidae) is revised. The apparent discrepancy between the reported importance of C. havitandi in countries to which it has been introduced and the region from which it originated is shown to be due to misidentification and taxonomic confusion between C. travians, C. havilandi and C. gestroi. Based on an examination of specimens from Southeast Asia, two species are recognized, namely C. gestroi and C. travians. Coptotermes havilandi, described from imagos, is shown to be the same species as C. gestro described earlier from the soldier caste, and is designated a junior synonym. Coptotermes gestroi occurs from Assam through Burma and Thailand to Malaysia and the Indonesian archipelago, and has been introduced into other geographic regions, including parts of North and South America and the Caribbean. It is frequently found damaging wood in buildings, and is often intercepted outside its range in cargo onboard ships and sailing vessels, which is a likely mechanism for its spread to new geographical areas. Coptotermes gestroi has been misidentified in much literature as C. travians. Conversely, C. travians has been misidentified in recent literature in Peninsular Malaysia as C. havilandi and was redescribed from Borneo as C. borneensis, which is here designated a junior synonym of C. travians. It has a known distribution from Peninsular Malaysia to Borneo, and has not been found infesting wood in buildings. It is envisaged that the resolution of this taxonomic problem will enable the deployment of common pest management strategies for C. gestro the primary pest species of Coptotermes originating from Southeast Asia.
Resumo:
Nitric oxide regulates many important cellular processes including motility and invasion. Many of its effects are mediated through the modification of specific cysteine residues in target proteins, a process called S-nitrosylation. Here we show that S-nitrosylation of proteins occurs at the leading edge of migrating trophoblasts and can be attributed to the specific enrichment of inducible nitric oxide synthase (iNOS/NOS2) in this region. Localisation of iNOS to the leading edge is co-incidental with a site of extensive actin polymerisation and is only observed in actively migrating cells. In contrast endothelial nitric oxide synthase (eNOS/NOS3) shows distribution that is distinct and non-colocalised with iNOS, suggesting that the protein S-nitrosylation observed at the leading edge is caused only by iNOS and not eNOS. We have identified MMP-9 as a potential target for S-nitrosylation in these cells and demonstrate that it co-localises with iNOS at the leading edge of migrating cells. We further demonstrate that iNOS plays an important role in promoting trophoblast invasion, which is an essential process in the establishment of a successful pregnancy.
Resumo:
The accidental introduction of the spiralling whitefly, Aleurodicus dispersus Russell (Homoptera: Aleyrodidae) to Seychelles in late 2003 is exploited during early 2005 to study interactions between A. dispersus, native and exotic host plants and their associated arthropod fauna. The numbers of A. dispersus egg spirals and pupae, predator and herbivore taxa were recorded for eight related native/exotic pairs of host plants found on Mahe, the largest island in Seychelles. Our data revealed no significant difference in herbivore density (excluding A. dispersus) between related native and exotic plants, which suggests that the exotic plants do not benefit from 'enemy release'. There were also no differences in predator density, or combined species richness between native and exotic plants. Together these data suggest that 'biotic resistance' to invasion is also unlikely. Despite the apparent lack of differences in community structure significantly fewer A. dispersus egg spirals and pupae were found on the native plants than on the exotic plants. Additional data on A. dispersus density were collected on Cousin Island, a managed nature reserve in which exotic plants are carefully controlled. Significantly higher densities of A. dispersus were observed on Mahe, where exotic plants are abundant, than on Cousin. These data suggest that the rapid invasion of Seychelles by A. dispersus may largely be due to the high proportion of plant species that are both exotic and hosts of A. dispersus; no support was found for either the 'enemy release' or the 'biotic resistance' hypotheses.
Resumo:
BACKGROUND: Heparin can significantly reduce pregnancy complications in women with certain thrombophilias, such as antiphospholipid syndrome. Recent reports suggest that heparin may act by mechanisms other than anticoagulation. However, the effect of heparin on trophoblast biology in the absence of thrombophilia has not been extensively investigated. Therefore, this study aimed to evaluate trophoblast invasion, using an established cell line and primary extravillous trophoblasts (EVTs), following exposure to heparin and fractionated heparin. METHODS: An EVT cell line (SGHPL-4) was used to study invasion in the presence of hepatocyte growth factor (HGF) and varying concentrations of fractionated and unfractionated heparin. These experiments were repeated using first trimester primary EVTs. RESULTS: Both forms of heparin significantly reduced HGF-induced invasion in the SGHPL-4 cell line. This suppression of invasion appeared to be dose-dependent for fractionated heparin. In primary EVT cells, fractionated heparin also demonstrated significant suppression of invasion. CONCLUSIONS: Heparin has the potential to reduce trophoblast invasion in cell lines and first trimester EVT cells. This article highlights the need for further evaluation of these medications in vitro and in vivo, especially when used in the absence of thrombophilic disorders.
Resumo:
Periplasmic chaperone/usher machineries are used for assembly of filamentous adhesion organelles of Gram-negative pathogens in a process that has been suggested to be driven by folding energy. Structures of mutant chaperone-subunit complexes revealed a final folding transition (condensation of the subunit hydrophobic core) on the release of organelle subunit from the chaperone-subunit pre-assembly complex and incorporation into the final fibre structure. However, in view of the large interface between chaperone and subunit in the pre-assembly complex and the reported stability of this complex, it is difficult to understand how final folding could release sufficient energy to drive assembly. In the present paper, we show the X-ray structure for a native chaperone-fibre complex that, together with thermodynamic data, shows that the final folding step is indeed an essential component of the assembly process. We show that completion of the hydrophobic core and incorporation into the fibre results in an exceptionally stable module, whereas the chaperone-subunit preassembly complex is greatly destabilized by the high-energy conformation of the bound subunit. This difference in stabilities creates a free energy potential that drives fibre formation.
Resumo:
Studies in human, animal and cellular systems suggest that phenols from virgin olive oil are capable of inhibiting several stages in carcinogenesis, including metastasis. The invasion cascade comprises cell attachment to extracellular matrix components or basement membrane, degradation of basement membrane by proteolytic enzymes and migration of cells through the modified matrix. In the present study, we investigated the effect of phenolics extracted from virgin olive oil (OVP) and its main constituents: hydroxytyrosol (3,4-dihydroxyphenylethanol), tyrosol (p-hydroxyphenylethanol), pinoresinol and caffeic acid. The effects of these phenolics were tested on the invasion of HT115 human colon carcinoma cells in a Matrigel invasion assay. OVP and its compounds showed different dose-related anti-invasive effects. At 25 mu g/ml OVP and equivalent doses of individual compounds, significant anti-invasive effects were seen in the range of 45-55% of control. Importantly, OVP, but not the isolated phenolics, significantly reduced total cell number in the Matrigel invasion assay. There were no significant effects shown on cell viability, indicating the reduction of cell number in the Matrigel invasion assay was not due to cytotoxicity. There were also no significant effects on cell attachment to plastic substrate, indicating the importance of extracellular matrix in modulating the anti-invasive effects of OVP. In conclusion, the results from this study indicate that phenols from virgin olive oil have the ability to inhibit invasion of colon cancer cells and the effects may be mediated at different levels of the invasion cascade. (c) 2007 Wiley-Liss, Inc.
Resumo:
The prebiotic Bimuno (R) is a mixture containing galactooligosaccharides (GOSs), produced by the galactosyltransferase activity of Bifidobacterium bifidum NCIMB 411 71 using lactose as the substrate Previous in vivo and in vitro studies demonstrating the efficacy of Bimuno (R) in reducing Salmonella enterica serovar Typhimurium (S Typhimurium) colonization did not ascertain whether or not the protective effects could be attributed to the prebiotic component GOS Here we wished to test the hypothesis that GOS, derived from Bimuno (R) may confer the direct anti-invasive and protective effects of Bimuno (R) In this study the efficacy of Bimuno (R), a basal solution of Bimuno (R) without GOS [which contained glucose, galactose, lactose, maltodextrin and gum arabic in the same relative proportions (w/w) as they are found in Bimuno (R)] and purified GOS to reduce S Typhimurium adhesion and invasion was assessed using a series of in vitro and in vivo models The novel use of three dimensionally cultured HT-29-16E cells to study prebiotics in vitro demonstrated that the presence of similar to 5 mg Bimuno (R) ml(-1) or similar to 2 5 mg GOS ml(-1) significantly reduced the invasion of S Typhimurium (SL1344nal(r)) (P<0 0001) Furthermore, similar to 2 5 mg GOS ml(-1) significantly reduced the adherence of S Typhimurium (SU 344nal(r)) (P<0 0001) It was demonstrated that cells produced using this system formed multi-layered aggregates of cells that displayed excellent formation of brush borders and tight junctions In the murine ligated deal gut loops, the presence of Bimuno (R) or GOS prevented the adherence or invasion of S Typhimurium to enterocytes, and thus reduced its associated pathology This protection appeared to correlate with significant reductions in the neutral and acidic mucins detected in goblet cells, possibly as a consequence of stimulating the cells to secrete the mucin into the lumen In all assays, Bimuno (R) without GOS conferred no such protection, indicating that the basal solution confers no protective effects against S Typhimurium Collectively, the studies presented here clearly indicate that the protective effects conferred by Bimuno (R) can be attributed to GOS
Resumo:
It has been postulated that the R- and S-equol enantiomers have different biological properties given their different binding affinities for the estrogen receptor. S-(-)equol is produced via the bacterial conversion of the soy isoflavone daidzein in the gut. We have compared the biological effects of purified S-equol to that of racemic (R and S) equol on breast and prostate cancer cells of varying receptor status in vitro. Both racemic and S-equol inhibited the growth of the breast cancer cell line MDA-MB-231 (> or = 10 microM) and the prostate cancer cell lines LNCaP (> or = 5 microM) and LAPC-4 (> or = 2.5 microM). The compounds also showed equipotent effects in inhibiting the invasion of MDA-MB-231 and PC-3 cancer cells through matrigel. S-equol (1, 10, 30 microM) was unable to prevent DNA damage in MCF-7 or MCF-10A breast cells following exposure to 2-hydroxy-4-nonenal, menadione, or benzo(a)pyrene-7,8-dihydrodiol-9,10-epoxide. In contrast, racemic equol (10, 30 microM) prevented DNA damage in MCF-10A cells following exposure to 2-hydroxy-4-nonenal or menadione. These findings suggest that racemic equol has strong antigenotoxic activity in contrast to the purified S-equol enantiomer implicating the R-, rather than the S-enantiomer as being responsible for the antioxidant effects of equol, a finding that may have implications for the in vivo chemoprotective properties of equol.