817 resultados para Intrusion Detection, Computer Security, Misuse
Resumo:
Under the framework of the European Union Funded SAFEE project(1), this paper gives an overview of a novel monitoring and scene analysis system developed for use onboard aircraft in spatially constrained environments. The techniques discussed herein aim to warn on-board crew about pre-determined indicators of threat intent (such as running or shouting in the cabin), as elicited from industry and security experts. The subject matter experts believe that activities such as these are strong indicators of the beginnings of undesirable chains of events or scenarios, which should not be allowed to develop aboard aircraft. This project aimes to detect these scenarios and provide advice to the crew. These events may involve unruly passengers or be indicative of the precursors to terrorist threats. With a state of the art tracking system using homography intersections of motion images, and probability based Petri nets for scene understanding, the SAFEE behavioural analysis system automatically assesses the output from multiple intelligent sensors, and creates. recommendations that are presented to the crew using an integrated airborn user interface. Evaluation of the system is conducted within a full size aircraft mockup, and experimental results are presented, showing that the SAFEE system is well suited to monitoring people in confined environments, and that meaningful and instructive output regarding human actions can be derived from the sensor network within the cabin.
Resumo:
Multibiometrics aims at improving biometric security in presence of spoofing attempts, but exposes a larger availability of points of attack. Standard fusion rules have been shown to be highly sensitive to spoofing attempts – even in case of a single fake instance only. This paper presents a novel spoofing-resistant fusion scheme proposing the detection and elimination of anomalous fusion input in an ensemble of evidence with liveness information. This approach aims at making multibiometric systems more resistant to presentation attacks by modeling the typical behaviour of human surveillance operators detecting anomalies as employed in many decision support systems. It is shown to improve security, while retaining the high accuracy level of standard fusion approaches on the latest Fingerprint Liveness Detection Competition (LivDet) 2013 dataset.
Resumo:
The rapid development of data transfer through internet made it easier to send the data accurate and faster to the destination. There are many transmission media to transfer the data to destination like e-mails; at the same time it is may be easier to modify and misuse the valuable information through hacking. So, in order to transfer the data securely to the destination without any modifications, there are many approaches like cryptography and steganography. This paper deals with the image steganography as well as with the different security issues, general overview of cryptography, steganography and digital watermarking approaches. The problem of copyright violation of multimedia data has increased due to the enormous growth of computer networks that provides fast and error free transmission of any unauthorized duplicate and possibly manipulated copy of multimedia information. In order to be effective for copyright protection, digital watermark must be robust which are difficult to remove from the object in which they are embedded despite a variety of possible attacks. The message to be send safe and secure, we use watermarking. We use invisible watermarking to embed the message using LSB (Least Significant Bit) steganographic technique. The standard LSB technique embed the message in every pixel, but my contribution for this proposed watermarking, works with the hint for embedding the message only on the image edges alone. If the hacker knows that the system uses LSB technique also, it cannot decrypt correct message. To make my system robust and secure, we added cryptography algorithm as Vigenere square. Whereas the message is transmitted in cipher text and its added advantage to the proposed system. The standard Vigenere square algorithm works with either lower case or upper case. The proposed cryptography algorithm is Vigenere square with extension of numbers also. We can keep the crypto key with combination of characters and numbers. So by using these modifications and updating in this existing algorithm and combination of cryptography and steganography method we develop a secure and strong watermarking method. Performance of this watermarking scheme has been analyzed by evaluating the robustness of the algorithm with PSNR (Peak Signal to Noise Ratio) and MSE (Mean Square Error) against the quality of the image for large amount of data. While coming to see results of the proposed encryption, higher value of 89dB of PSNR with small value of MSE is 0.0017. Then it seems the proposed watermarking system is secure and robust for hiding secure information in any digital system, because this system collect the properties of both steganography and cryptography sciences.
Resumo:
In the last years radar sensor networks for localization and tracking in indoor environment have generated more and more interest, especially for anti-intrusion security systems. These networks often use Ultra Wide Band (UWB) technology, which consists in sending very short (few nanoseconds) impulse signals. This approach guarantees high resolution and accuracy and also other advantages such as low price, low power consumption and narrow-band interference (jamming) robustness. In this thesis the overall data processing (done in MATLAB environment) is discussed, starting from experimental measures from sensor devices, ending with the 2D visualization of targets movements over time and focusing mainly on detection and localization algorithms. Moreover, two different scenarios and both single and multiple target tracking are analyzed.
Resumo:
To retrospectively analyze the performance of a commercial computer-aided diagnosis (CAD) software in the detection of pulmonary nodules in original and energy-subtracted (ES) chest radiographs.
Resumo:
The objective of our study was to compare the effect of dual-energy subtraction and bone suppression software alone and in combination with computer-aided detection (CAD) on the performance of human observers in lung nodule detection.
Resumo:
PURPOSE: The clinical role of CAD systems to detect breast cancer, which have not been on cancer containing mammograms not detected by the radiologist was proven retrospectively. METHODS: All patients from 1992 to 2005 with a histologically verified malignant breast lesion and a mammogram at our department, were analyzed in retrospect focussing on the time of detection of the malignant lesion. All prior mammograms were analyzed by CAD (CADx, USA). The resulting CAD printout was matched with the cancer containing images yielding to the radiological diagnosis of breast cancer. CAD performance, sensitivity as well as the association of CAD and radiological features were analyzed. RESULTS: 278 mammograms fulfilled the inclusion criteria. 111 cases showed a retrospectively visible lesion (71 masses, 23 single microcalcification clusters, 16 masses with microcalcifications, in one case two microcalcification clusters). 54/87 masses and 34/41 microcalcifications were detected by CAD. Detection rates varied from 9/20 (ACR 1) to 5/7 (ACR 4) (45% vs. 71%). The detection of microcalcifications was not influenced by breast tissue density. CONCLUSION: CAD might be useful in an earlier detection of subtle breast cancer cases, which might remain otherwise undetected.
Resumo:
OBJECTIVES To find the best pairing of first and second reader at highest sensitivity for detecting lung nodules with CT at various dose levels. MATERIALS AND METHODS An anthropomorphic lung phantom and artificial lung nodules were used to simulate screening CT-examination at standard dose (100 mAs, 120 kVp) and 8 different low dose levels, using 120, 100 and 80 kVp combined with 100, 50 and 25 mAs. At each dose level 40 phantoms were randomly filled with 75 solid and 25 ground glass nodules (5-12 mm). Two radiologists and 3 different computer aided detection softwares (CAD) were paired to find the highest sensitivity. RESULTS Sensitivities at standard dose were 92%, 90%, 84%, 79% and 73% for reader 1, 2, CAD1, CAD2, CAD3, respectively. Combined sensitivity for human readers 1 and 2 improved to 97%, (p1=0.063, p2=0.016). Highest sensitivities--between 97% and 99.0%--were achieved by combining any radiologist with any CAD at any dose level. Combining any two CADs, sensitivities between 85% and 88% were significantly lower than for radiologists combined with CAD (p<0.03). CONCLUSIONS Combination of a human observer with any of the tested CAD systems provide optimal sensitivity for lung nodule detection even at reduced dose at 25 mAs/80 kVp.
Resumo:
OBJECTIVES The aim of this phantom study was to minimize the radiation dose by finding the best combination of low tube current and low voltage that would result in accurate volume measurements when compared to standard CT imaging without significantly decreasing the sensitivity of detecting lung nodules both with and without the assistance of CAD. METHODS An anthropomorphic chest phantom containing artificial solid and ground glass nodules (GGNs, 5-12 mm) was examined with a 64-row multi-detector CT scanner with three tube currents of 100, 50 and 25 mAs in combination with three tube voltages of 120, 100 and 80 kVp. This resulted in eight different protocols that were then compared to standard CT sensitivity (100 mAs/120 kVp). For each protocol, at least 127 different nodules were scanned in 21-25 phantoms. The nodules were analyzed in two separate sessions by three independent, blinded radiologists and computer-aided detection (CAD) software. RESULTS The mean sensitivity of the radiologists for identifying solid lung nodules on a standard CT was 89.7% ± 4.9%. The sensitivity was not significantly impaired when the tube and current voltage were lowered at the same time, except at the lowest exposure level of 25 mAs/80 kVp [80.6% ± 4.3% (p = 0.031)]. Compared to the standard CT, the sensitivity for detecting GGNs was significantly lower at all dose levels when the voltage was 80 kVp; this result was independent of the tube current. The CAD significantly increased the radiologists' sensitivity for detecting solid nodules at all dose levels (5-11%). No significant volume measurement errors (VMEs) were documented for the radiologists or the CAD software at any dose level. CONCLUSIONS Our results suggest a CT protocol with 25 mAs and 100 kVp is optimal for detecting solid and ground glass nodules in lung cancer screening. The use of CAD software is highly recommended at all dose levels.
Resumo:
Aviation security strongly depends on screeners' performance in the detection of threat objects in x-ray images of passenger bags. We examined for the first time the effects of stress and stress-induced cortisol increases on detection performance of hidden weapons in an x-ray baggage screening task. We randomly assigned 48 participants either to a stress or a nonstress group. The stress group was exposed to a standardized psychosocial stress test (TSST). Before and after stress/nonstress, participants had to detect threat objects in a computer-based object recognition test (X-ray ORT). We repeatedly measured salivary cortisol and X-ray ORT performance before and after stress/nonstress. Cortisol increases in reaction to psychosocial stress induction but not to nonstress independently impaired x-ray detection performance. Our results suggest that stress-induced cortisol increases at peak reactivity impair x-ray screening performance.