902 resultados para Intergovernmental Panel on Climate Change
Resumo:
Much attention has been paid to the effects of climate change on species' range reductions and extinctions. There is however surprisingly little information on how climate change driven threat may impact the tree of life and result in loss of phylogenetic diversity (PD). Some plant families and mammalian orders reveal nonrandom extinction patterns, but many other plant families do not. Do these discrepancies reflect different speciation histories and does climate induced extinction result in the same discrepancies among different groups? Answers to these questions require representative taxon sampling. Here, we combine phylogenetic analyses, species distribution modeling, and climate change projections on two of the largest plant families in the Cape Floristic Region (Proteaceae and Restionaceae), as well as the second most diverse mammalian order in Southern Africa (Chiroptera), and an herbivorous insect genus (Platypleura) in the family Cicadidae to answer this question. We model current and future species distributions to assess species threat levels over the next 70years, and then compare projected with random PD survival. Results for these animal and plant clades reveal congruence. PD losses are not significantly higher under predicted extinction than under random extinction simulations. So far the evidence suggests that focusing resources on climate threatened species alone may not result in disproportionate benefits for the preservation of evolutionary history.
Resumo:
Many endangered species persist as a series of isolated populations, with some populations more genetically diverse than others. If climate change disproportionately threatens the most diverse populations, the species' ability to adapt (and hence its long-term viability) may be affected more severely than would be apparent by its numerical reduction. In the present study, we combine genetic data with modelling of species distributions under climate change to document this situation in an endangered lizard (Eulamprus leuraensis) from montane southeastern Australia. The species is known from only about 40 isolated swamps. Genetic diversity of lizard populations is greater in some sites than others, presumably reflecting consistently high habitat suitability over evolutionary time. Species distribution modelling suggests that the most genetically diverse populations are the ones most at risk from climate change, so that global warming will erode the species' genetic variability faster than it curtails the species' geographic distribution.
Resumo:
En aquest projecte s’ha estudiat la relació entre els canvis en les temperatures superficials de l’Oceà Atlàntic i els canvis en la circulació atmosfèrica en el segle XX. Concretament s’han analitzat dos períodes de estudi: el primer des del 1940 al 1960 i el segon des del 1980 fins al 2000. S’ha posat especial interès en les anomalies en les temperatures superficials del mar en la regió tropical de l’Oceà Atlàntic i la possible interconnexió amb els canvis climàtics observats i predits. Per a la realització de l’estudi s’han dut a terme una sèrie d’experiments utilitzant el model climàtic elaborat a la universitat d’UCLA (UCLA‐AGCM model). Els resultats obtinguts han estat analitzats en forma de mapes i figures per a cada variable d’estudi. També s’ha fet una comparació entre els resultats obtinguts i altres trobats en altres treballs publicats sobre el mateix tema de recerca. Els resultats obtinguts són molt amplis i poden tenir diverses interpretacions. Tot i així algunes de les conclusions a les quals s’ha arribat són: les diferències més significatives per a les variables estudiades i trobades a partir dels resultats obtinguts del model per als dos períodes d’estudi són en els mesos d’hivern i a la zona dels tròpics; concretament a parts del nord de sud Amèrica i a parts del nord d’Àfrica. S’han trobat també canvis significatius en els patrons de precipitació sobre aquestes mateixes zones. També s’ha observant un moviment cap al nord de la zona d’interconvergència tropical i pot ser degut a l’anòmal gradient trobat a la zona equatorial en les temperatures superficial de l’Oceà. Tot i així per a una definitiva discussió i conclusions sobre els resultats dels experiments, seria necessari un estudi més ampli i profund.
Resumo:
A noticeable increase in mean temperature has already been observed in Switzerland and summer temperatures up to 4.8 K warmer are expected by 2090. This article reviews the observed impacts of climate change on biodiversity and consider some perspectives for the future at the national level. The following impacts are already evident for all considered taxonomic groups: elevation shifts of distribution toward mountain summits, spread of thermophilous species, colonisation by new species from warmer areas and phenological shifts. Additionally, in the driest areas, increasing droughts are affecting tree survival and fish species are suffering from warm temperatures in lowland regions. These observations are coherent with model projections, and future changes will probably follow the current trends. These changes will likely cause extinctions for alpine species (competition, loss of habitat) and lowland species (temperature or drought stress). In the very urbanised Swiss landscape, the high fragmentation of the natural ecosystems will hinder the dispersal of many species towards mountains. Moreover, disruptions in species interactions caused by individual migration rates or phenological shifts are likely to have consequences for biodiversity. Conversely, the inertia of the ecosystems (species longevity, restricted dispersal) and the local persistence of populations will probably result in lower extinction rates than expected with some models, at least in 21st century. It is thus very difficult to estimate the impact of climate change in terms of species extinctions. A greater recognition by society of the intrinsic value of biodiversity and of its importance for our existence will be essential to put in place effective mitigation measures and to safeguard a maximum number of native species.
Resumo:
1 Insect pests, biological invasions and climate change are considered to representmajor threats to biodiversity, ecosystem functioning, agriculture and forestry.Deriving hypothesis of contemporary and/or future potential distributions of insectpests and invasive species is becoming an important tool for predicting the spatialstructure of potential threats.2 The western corn rootworm (WCR) Diabrotica virgifera virgifera LeConte is apest of maize in North America that has invaded Europe in recent years, resultingin economic costs in terms of maize yields in both continents. The present studyaimed to estimate the dynamics of potential areas of invasion by the WCR under aclimate change scenario in the Northern Hemisphere. The areas at risk under thisscenario were assessed by comparing, using complementary approaches, the spatialprojections of current and future areas of climatic favourability of the WCR. Spatialhypothesis were generated with respect to the presence records in the native rangeof the WCR and physiological thresholds from previous empirical studies.3 We used a previously developed protocol specifically designed to estimatethe climatic favourability of the WCR. We selected the most biologicallyrelevant climatic predictors and then used multidimensional envelope (MDE) andMahalanobis distances (MD) approaches to derive potential distributions for currentand future climatic conditions.4 The results obtained showed a northward advancement of the upper physiologicallimit as a result of climate change, which might increase the strength of outbreaksat higher latitudes. In addition, both MDE and MD outputs predict the stability ofclimatic favourability for the WCR in the core of the already invaded area in Europe,which suggests that this zone would continue to experience damage from this pestin Europe.
Resumo:
PREMISE OF THE STUDY: Numerous long-term studies in seasonal habitats have tracked interannual variation in first flowering date (FFD) in relation to climate, documenting the effect of warming on the FFD of many species. Despite these efforts, long-term phenological observations are still lacking for many species. If we could forecast responses based on taxonomic affinity, however, then we could leverage existing data to predict the climate-related phenological shifts of many taxa not yet studied. METHODS: We examined phenological time series of 1226 species occurrences (1031 unique species in 119 families) across seven sites in North America and England to determine whether family membership (or family mean FFD) predicts the sensitivity of FFD to standardized interannual changes in temperature and precipitation during seasonal periods before flowering and whether families differ significantly in the direction of their phenological shifts. KEY RESULTS: Patterns observed among species within and across sites are mirrored among family means across sites; early-flowering families advance their FFD in response to warming more than late-flowering families. By contrast, we found no consistent relationships among taxa between mean FFD and sensitivity to precipitation as measured here. CONCLUSIONS: Family membership can be used to identify taxa of high and low sensitivity to temperature within the seasonal, temperate zone plant communities analyzed here. The high sensitivity of early-flowering families (and the absence of early-flowering families not sensitive to temperature) may reflect plasticity in flowering time, which may be adaptive in environments where early-season conditions are highly variable among years.
Resumo:
Based on conclusions drawn from general climatic impact assessment in mountain regions, the review synthesizes results relevant to the European Alps published mainly from 1994 onward in the fields of population genetics, ecophysiology, phenology, phytogeography, modeling, paleoecology and vegetation dynamics. Other important factors of global change interacting synergistically with climatic factors are also mentioned, such as atmospheric CO2 concentration, eutrophication, ozone or changes in land-use. Topics addressed are general species distribution and populations (persistence, acclimation, genetic variability, dispersal, fragmentation, plant/animal interaction, species richness, conservation), potential response of vegetation (ecotonal shift - area, physiography - changes in the composition, structural changes), phenology, growth and productivity, and landscape. In conclusion, the European Alps appear to have a natural inertia and thus to tolerate an increase of 1-2 K of mean air temperature as far as plant species and ecosystems are concerned in general. However, the impact of land-use is very likely to negate this buffer in many areas. For a change of the order of 3 K or more, profound changes may be expected.
Resumo:
Selostus: Ilmastonmuutoksen taloudelliset vaikutukset suomalaiseen maatalouteen
Resumo:
Today, perhaps without their realization, Iowans are factoring climate change into their lives and activities. Current farming practices and flood mitigation efforts, for example, are reflecting warmer winters, longer growing seasons, warmer nights, higher dew-point temperatures, increased humidity, greater annual stream flows, and more frequent severe precipitation events (Fig. 1) than were prevalent during the past 50 years. Some of the effects of these changes (such as longer growing season) may be positive, while others (particularly the tendency for greater precipitation events that lead to flooding) are negative. Climate change embodies all of these results and many more in a complex manner. The Iowa legislature has been proactive in seeking advice about climate change and its impacts on our state. In 2007, Governor Culver and the Iowa General Assembly enacted Senate File 485 and House File 2571 to create the Iowa Climate Change Advisory Council (ICCAC). ICCAC members reported an emissions inventory and a forecast for Iowa’s greenhouse gases (GHGs), policy options for reducing Iowa’s GHG, and two scenarios charting GHG reductions of 50% and 90% by 2050 from a baseline of 2005. Following issuance of the final report in December 2008, the General Assembly enacted a new bill in 2009 (Sec. 27, Section 473.7, Code 2009 amended) that set in motion a review of climate change impacts and policies in Iowa. This report is the result of that 2009 bill. It continues the dialogue between Iowa’s stakeholders, scientific community, and the state legislature that was begun with these earlier reports.
Resumo:
Aim Species distribution models (SDMs) based on current species ranges underestimate the potential distribution when projected in time and/or space. A multi-temporal model calibration approach has been suggested as an alternative, and we evaluate this using 13,000 years of data. Location Europe. Methods We used fossil-based records of presence for Picea abies, Abies alba and Fagus sylvatica and six climatic variables for the period 13,000 to 1000yr bp. To measure the contribution of each 1000-year time step to the total niche of each species (the niche measured by pooling all the data), we employed a principal components analysis (PCA) calibrated with data over the entire range of possible climates. Then we projected both the total niche and the partial niches from single time frames into the PCA space, and tested if the partial niches were more similar to the total niche than random. Using an ensemble forecasting approach, we calibrated SDMs for each time frame and for the pooled database. We projected each model to current climate and evaluated the results against current pollen data. We also projected all models into the future. Results Niche similarity between the partial and the total-SDMs was almost always statistically significant and increased through time. SDMs calibrated from single time frames gave different results when projected to current climate, providing evidence of a change in the species realized niches through time. Moreover, they predicted limited climate suitability when compared with the total-SDMs. The same results were obtained when projected to future climates. Main conclusions The realized climatic niche of species differed for current and future climates when SDMs were calibrated considering different past climates. Building the niche as an ensemble through time represents a way forward to a better understanding of a species' range and its ecology in a changing climate.