970 resultados para Interacting Phenotypes
Resumo:
Acute psychological stress can produce significant hemoconcentration as well as prothrombotic changes in blood, both of which may have potentially harmful effects on the cardiovascular system. It is unclear whether these effects are independent or have influence on each other.
Resumo:
High levels of HIV-1 replication during the chronic phase of infection usually correlate with rapid progression to severe immunodeficiency. However, a minority of highly viremic individuals remains asymptomatic and maintains high CD4⁺ T cell counts. This tolerant profile is poorly understood and reminiscent of the widely studied nonprogressive disease model of SIV infection in natural hosts. Here, we identify transcriptome differences between rapid progressors (RPs) and viremic nonprogressors (VNPs) and highlight several genes relevant for the understanding of HIV-1-induced immunosuppression. RPs were characterized by a specific transcriptome profile of CD4⁺ and CD8⁺ T cells similar to that observed in pathogenic SIV-infected rhesus macaques. In contrast, VNPs exhibited lower expression of interferon-stimulated genes and shared a common gene regulation profile with nonpathogenic SIV-infected sooty mangabeys. A short list of genes associated with VNP, including CASP1, CD38, LAG3, TNFSF13B, SOCS1, and EEF1D, showed significant correlation with time to disease progression when evaluated in an independent set of CD4⁺ T cell expression data. This work characterizes 2 minimally studied clinical patterns of progression to AIDS, whose analysis may inform our understanding of HIV pathogenesis.
Resumo:
Two distinct, stable inflammatory phenotypes have been described in adults with asthma: eosinophilic and non-eosinophilic. Treatment strategies based on these phenotypes have been successful. This study evaluated sputum cytology in children with asthma to classify sputum inflammatory phenotypes and to assess their stability over time.
Resumo:
BACKGROUND: Recurrent airway obstruction (RAO) is a severe chronic respiratory disease affecting horses worldwide, though mostly in the Northern hemisphere. Environmental as well as genetic factors strongly influence the course and prognosis of the disease. Research has been focused on characterization of immunologic factors contributing to inflammatory responses, on genetic linkage analysis, and, more recently, on proteomic analysis of airway secretions from affected horses. The goal of this study was to investigate the interactions between eight candidate genes previously identified in a genetic linkage study and proteins expressed in bronchoalveolar lavage fluid (BALF) collected from healthy and RAO-affected horses. The analysis was carried out with Ingenuity Pathway Analysis(R) bioinformatics software. RESULTS: The gene with the greatest number of indirect interactions with the set of proteins identified is Interleukin 4 Receptor (IL-4R), whose protein has also been detected in BALF. Interleukin 21 receptor and chemokine (C-C motif) ligand 24 also showed a large number of interactions with the group of detected proteins. Protein products of other genes like that of SOCS5, revealed direct interactions with the IL-4R protein. The interacting proteins NOD2, RPS6KA5 and FOXP3 found in several pathways are reported regulators of the NFkappaB pathway. CONCLUSIONS: The pathways generated with IL-4R highlight possible important intracellular signaling cascades implicating, for instance, NFkappaB. Furthermore, the proposed interaction between SOCS5 and IL-4R could explain how different genes can lead to identical clinical RAO phenotypes, as observed in two Swiss Warmblood half sibling families because these proteins interact upstream of an important cascade where they may act as a functional unit.
Resumo:
Invariant natural killer T (iNKT) cells undergo canonical, Vα14-Jα18 rearrangement of the T-cell receptor (TCR) in mice; this form of the TCR recognizes glycolipids presented by CD1d. iNKT cells mediate many different immune reactions. Their constitutive activated and memory phenotype and rapid initiation of effector functions after stimulation indicate previous antigen-specific stimulation. However, little is known about this process. We investigated whether symbiotic microbes can determine the activated phenotype and function of iNKT cells.
Resumo:
Childhood wheezing and asthma vary greatly in clinical presentation and time course. The extent to which phenotypic variation reflects heterogeneity in disease pathways is unclear.
Resumo:
The cardiac sodium current (INa) is responsible for the rapid depolarization of cardiac cells, thus allowing for their contraction. It is also involved in regulating the duration of the cardiac action potential (AP) and propagation of the impulse throughout the myocardium. Cardiac INa is generated by the voltage-gated Na(+) channel, NaV1.5, a 2016-residue protein which forms the pore of the channel. Over the past years, hundreds of mutations in SCN5A, the human gene coding for NaV1.5, have been linked to many cardiac electrical disorders, including the congenital and acquired long QT syndrome, Brugada syndrome, conduction slowing, sick sinus syndrome, atrial fibrillation, and dilated cardiomyopathy. Similar to many membrane proteins, NaV1.5 has been found to be regulated by several interacting proteins. In some cases, these different proteins, which reside in distinct membrane compartments (i.e. lateral membrane vs. intercalated disks), have been shown to interact with the same regulatory domain of NaV1.5, thus suggesting that several pools of NaV1.5 channels may co-exist in cardiac cells. The aim of this review article is to summarize the recent works that demonstrate its interaction with regulatory proteins and illustrate the model that the sodium channel NaV1.5 resides in distinct and different pools in cardiac cells. This article is part of a Special Issue entitled: Cardiomyocyte Biology: Cardiac Pathways of Differentiation, Metabolism and Contraction.