999 resultados para Interação celular
Resumo:
A polpa da carambola contém compostos químicos com propriedades antioxidantes importantes à saúde humana, contra o envelhecimento celular e a prevenção de doenças. Este trabalho objetivou avaliar o fruto de acessos de caramboleira quanto às concentrações de compostos antioxidantes. Foram analisadas as concentrações de ácido ascórbico, carotenoides totais, flavonoides, fenólicos totais e taninos em cinco acessos selecionados de carambola, cultivada em três distintas regiões edafoclimáticas de Pernambuco. Os acessos de carambola diferiram significativamente entre si, quanto às concentrações de ácido ascórbico, fenólicos totais e taninos. A significância para os efeitos de ambiente confirmou que os locais de cultivo são heterogêneos, em relação ao potencial produtivo de frutos com diferentes concentrações médias de ácido ascórbico, flavonóis, fenólicos totais e taninos. A interação significativa entre genótipos e ambientes indica que os acessos de carambola apresentam respostas diferenciadas às concentrações de ácido ascórbico, flavonóis, fenólicos totais e taninos, quando cultivadas em diferentes locais. As condições de cultivo da Estação Experimental do IPA Itambé e os acessos IPA-7.2, IPA-22.3 proporcionaram as maiores concentrações de ácido ascórbico, fenólicos totais e taninos.
Resumo:
La regulación europea que define el desarrollo y comercialización de los productos cosméticos hace un énfasis especial en la necesidad de demostrar la efectividad de los productos cosméticos, en un entorno en el que, debido a la prohibición de uso de modelos experimentales animales, sólo es posible el estudio en modelos alternativos (in silico, in vitro, en cultivo, etc.) o en voluntarios sanos. Dentro de los métodos alternativos, la utilización de los modelos celulares adquiere cada vez más importancia por los grandes avances que se producen en la comprensión de los complejos procesos moleculares que regulan y controlan el devenir de la célula, individualmente y dentro de los tejidos.
Resumo:
QSAR studies based on flow microcalorimetric bioassay data for interaction of homologous series of m-alkoxyphenols and p-hydroxybenzoates with E. coli cells were carried out applying factorial design. Results for both series showed a linear relationship between log(dose)max and log Po/w. Analysis of these data allows the identification of contributions toward the derived bioactivity from the parent structures (the molecule minus n-CH2 groups present in the side-chain) and the lipophilic groups, CH2. These results are discussed with respect to drug quantitative structure-relationship.
Estudo microcalorimétrico da interação de tensoativos n-alquil-sulfato de sódio com tripsina a 298 k
Resumo:
Systematic study of the interactions of ionic surfactants with protein trypsin in buffer solution pH 3.5, 7.0 and 9.0, ionic strength 10 mM at 298 K was done using the microcalorimetric technique. In this study, anionic surfactant solutions of the sodium n-alkyl sulfates series (C8, C10, C12 and C14) were used. The enthalpy of interaction (ΔintHº) shows that the interaction of the surfactants C8, C10, C12 and C14 with trypsin in the solution pH 3.5 is an endothermic process with the value of ΔintHº decreasing linearly with increasing carbon chain length, which is attributed to the unfolding of the polypeptide chain. In the solution pH 7.0, we observed the same trend except for C14. In the solution pH 9.0, from C10 the enthapy of interaction didn't change with the increasing of the carbon chain length due to unfolding of the polypeptide. We concluded that when trypsin is folded, the enthalpy of interaction shows a linear relationship with the surfactant's hydrophobicity, in agreement with Traube's rule.
Resumo:
The calorimetric experiments based on technique breaking ampoule were carried out by measuring of the heat of solution of alcohol in isotonic solution (NaCl 0.10 M) and alcohol in suspension of Sc at 298 K. From these data the enthalpy of interaction alcohol with suspension of Sc (DtrsH°) was calculate by Hess law. In this study, the results indicate that the enthalpy of interaction of aliphatic alcohol (C2-C8) with suspensions of Sc is a process exothermic and becomes more exothermic with increasing of -CH2 group of alcohol in range -1,14 to -4,0 kJ.mol-1. We concluded that enthalpy of interaction shows a linear relationship with increasing of alcohol's lipophilicity, in agreement with Traube's rule.
Resumo:
The influence of the presence of hydrogen on Pt/TiO2 catalysts submitted to reduction treatment has been studied by FT-IR at room temperature. After submitting to LTR treatment, the hydrogen spillover has been detected and the presence of hydrogen at the bulk is shown to produce a strong absorption in the infrared spectral region. After HTR treatment, the hydrogen is strongly chemissorbed.
Resumo:
In this work, it was studied the behavior of the nonionic surfactant aqueous solutions, containing or not a hydrotropic agent, by resonance magnetic nuclear (NMR). We have studied monofunctional diblock copolymers of poly(propylene oxide-ethylene oxide) (R-PPO-PEO-OH, where R length is linear C4) as nonionic surfactant and sodium p-toluenesulfonate (NaPTS) as hydrotropic agent. The critical micelle concentration (CMC) of the aqueous copolymer solution was obtained from ¹H-NMR. The preliminary study of the interaction between the copolymer, under the unimer and micelle forms, and the hydrotrope, in aqueous solutions, was evaluated by ¹H-NMR and 13C-NMR.
Resumo:
The Vashishta-Rahman effective interaction potential, based on the Pauling's concept of "ionic radii", has been successfully employed to investigate structural and dynamical properties of different classes of material. By celebrating Pauling's birth centenary, we review the building up of the Vashishta-Rahman potential and we present molecular-dynamics simulation results for structure and dynamics of superionic materials, chalcogenide glasses and metallic oxides.
Resumo:
Organosulfur compounds present in garlic and onion have been evaluated as inhibitors of chemical carcinogenesis. Among them diallylsulfide was mainly investigated and studies demonstrated its metabolization to the corresponding sulfoxide and sulfone. In this work, we report the investigation of the interaction between the diallylsulfide and its oxidized derivatives, through cyclic voltammetry, with horse heart cytocrome-c (on a modified electrode with 4-mercaptopyridine). Our results suggest that there is a reversible interaction between cytocrome-c and diallylsulfide and diallylsulfone and an irreversible interaction with the diallylsulfoxide.
Resumo:
A new model for the H2 antagonists binding site is postulated based on adsorption coefficient values of sixteen antagonists, in the affinities constants of the primary and secondary binding sites, and in the chemical characterization of these sites by 3D-QSAR. All study compounds are in the extended conformation and deprotonated form. The lateral validation of the QSARs, CoMFA analysis, affinity constants and chemical similarity data suggest that the antagonists block the proton pump in the H2 receptor interacting with two tyrosines - one in the helix 5, and other in the helix 6.
Resumo:
This paper presents a study of the interaction of small molecules with ZnO surfaces by means of theoretical methods. The AM1 semi-empirical method was used for optimizing the geometric parameters of adsorbed molecules. The optimized AM1 structures were used in the calculations of the ab initio RHF method with the 3-21G* basis set. The interaction of CO, CO2 and NH3 molecules were studied with (ZnO)22 and (ZnO)60 cluster models. We have analyzed the interaction energy, SCF orbital energies, Mulliken charges and the density of states (DOS).
Resumo:
The literature carries many theories about the mechanism of action of local anesthetics (LA). We can highlight those focusing the direct effect of LA on the sodium channel protein and the ones that consider the interaction of anesthetic molecules with the lipid membrane phase. The interaction between local anesthetics and human erythrocyte membranes has been studied by ¹H and 31P nuclear magnetic resonance spectroscopy. It was found that lidocaine (LDC) and benzocaine (BZC) bind to the membranes, increase the mobility of the protons of the phospholipid's acyl chains, and decrease the mobility and/or change the structure of the polar head groups. The results indicate that lidocaine molecules are inserted across the polar and liquid interface of the membrane, establishing both electrostatic (charged form) and hydrophobic (neutral form) interactions. Benzocaine locates itself a little deeper in the bilayer, between the interfacial glycerol region and the hydrophobic core. These changes in mobility or conformation of membrane lipids could affect the Na+-channel protein insertion in the bilayer, stabilizing it in the inactivated state, thus causing anesthesia.
Resumo:
The chemotherapy agents against cancer may be classified as "cell cycle-specific" or "cell cycle-nonspecific". Nevertheless, several of them have their biological activity related to any kind of action on DNA such as: antimetabolic agents (DNA synthesis inhibition), inherently reactive agents (DNA alkylating electrophilic traps for macromolecular nucleophiles from DNA through inter-strand cross-linking - ISC - alkylation) and intercalating agents (drug-DNA interactions inherent to the binding made due to the agent penetration in to the minor groove of the double helix). The earliest and perhaps most extensively studied and most heavily employed clinical anticancer agents in use today are the DNA inter-strand cross-linking agents.