941 resultados para Intention-based models
Resumo:
Many of the material models most frequently used for the numerical simulation of the behavior of concrete when subjected to high strain rates have been originally developed for the simulation of ballistic impact. Therefore, they are plasticity-based models in which the compressive behavior is modeled in a complex way, while their tensile failure criterion is of a rather simpler nature. As concrete elements usually fail in tensión when subjected to blast loading, available concrete material models for high strain rates may not represent accurately their real behavior. In this research work an experimental program of reinforced concrete fíat elements subjected to blast load is presented. Altogether four detonation tests are conducted, in which 12 slabs of two different concrete types are subjected to the same blast load. The results of the experimental program are then used for the development and adjustment of numerical tools needed in the modeling of concrete elements subjected to blast.
Resumo:
Semantic Sensor Web infrastructures use ontology-based models to represent the data that they manage; however, up to now, these ontological models do not allow representing all the characteristics of distributed, heterogeneous, and web-accessible sensor data. This paper describes a core ontological model for Semantic Sensor Web infrastructures that covers these characteristics and that has been built with a focus on reusability. This ontological model is composed of different modules that deal, on the one hand, with infrastructure data and, on the other hand, with data from a specific domain, that is, the coastal flood emergency planning domain. The paper also presents a set of guidelines, followed during the ontological model development, to satisfy a common set of requirements related to modelling domain-specific features of interest and properties. In addition, the paper includes the results obtained after an exhaustive evaluation of the developed ontologies along different aspects (i.e., vocabulary, syntax, structure, semantics, representation, and context).
Resumo:
The mechanical behavior of granular materials has been traditionally approached through two theoretical and computational frameworks: macromechanics and micromechanics. Macromechanics focuses on continuum based models. In consequence it is assumed that the matter in the granular material is homogeneous and continuously distributed over its volume so that the smallest element cut from the body possesses the same physical properties as the body. In particular, it has some equivalent mechanical properties, represented by complex and non-linear constitutive relationships. Engineering problems are usually solved using computational methods such as FEM or FDM. On the other hand, micromechanics is the analysis of heterogeneous materials on the level of their individual constituents. In granular materials, if the properties of particles are known, a micromechanical approach can lead to a predictive response of the whole heterogeneous material. Two classes of numerical techniques can be differentiated: computational micromechanics, which consists on applying continuum mechanics on each of the phases of a representative volume element and then solving numerically the equations, and atomistic methods (DEM), which consist on applying rigid body dynamics together with interaction potentials to the particles. Statistical mechanics approaches arise between micro and macromechanics. It tries to state which the expected macroscopic properties of a granular system are, by starting from a micromechanical analysis of the features of the particles and the interactions. The main objective of this paper is to introduce this approach.
Resumo:
One of the most promising areas in which probabilistic graphical models have shown an incipient activity is the field of heuristic optimization and, in particular, in Estimation of Distribution Algorithms. Due to their inherent parallelism, different research lines have been studied trying to improve Estimation of Distribution Algorithms from the point of view of execution time and/or accuracy. Among these proposals, we focus on the so-called distributed or island-based models. This approach defines several islands (algorithms instances) running independently and exchanging information with a given frequency. The information sent by the islands can be either a set of individuals or a probabilistic model. This paper presents a comparative study for a distributed univariate Estimation of Distribution Algorithm and a multivariate version, paying special attention to the comparison of two alternative methods for exchanging information, over a wide set of parameters and problems ? the standard benchmark developed for the IEEE Workshop on Evolutionary Algorithms and other Metaheuristics for Continuous Optimization Problems of the ISDA 2009 Conference. Several analyses from different points of view have been conducted to analyze both the influence of the parameters and the relationships between them including a characterization of the configurations according to their behavior on the proposed benchmark.
Resumo:
To date, only few initiatives have been carried out in Spain in order to use mathematical models (e.g. DNDC, DayCent, FASSET y SIMSNIC) to estimate nitrogen (N) and carbon (C) dynamics as well as greenhouse gases (GHG) in Spanish agrosystems. Modeling at this level may allow to gain insight on both the complex relationships between biological and physicochemical processes, controlling the processes leading to GHG production and consumption in soils (e.g. nitrification, denitrification, decomposing, etc.), and the interactions between C and N cycles within the different components of the continuum plant-soil-environment. Additionally, these models can simulate the processes behind production, consumition and transport of GHG (e.g. nitrous oxide, N2O, and carbon dioxide, CO2) in the short and medium term and at different scales. Other sources of potential pollution from soils can be identified and quantified using these process-based models (e.g. NO3 y NH3).
Resumo:
Los fieltros son una familia de materiales textiles constituidos por una red desordenada de fibras conectadas por medio de enlaces térmicos, químicos o mecánicos. Presentan menor rigidez y resistencia (al igual que un menor coste de procesado) que sus homólogos tejidos, pero mayor deformabilidad y capacidad de absorción de energía. Los fieltros se emplean en diversas aplicaciones en ingeniería tales como aislamiento térmico, geotextiles, láminas ignífugas, filtración y absorción de agua, impacto balístico, etc. En particular, los fieltros punzonados fabricados con fibras de alta resistencia presentan una excelente resistencia frente a impacto balístico, ofreciendo las mismas prestaciones que los materiales tejidos con un tercio de la densidad areal. Sin embargo, se sabe muy poco acerca de los mecanismos de deformación y fallo a nivel microscópico, ni sobre como influyen en las propiedades mecánicas del material. Esta carencia de conocimiento dificulta la optimización del comportamiento mecánico de estos materiales y también limita el desarrollo de modelos constitutivos basados en mecanismos físicos, que puedan ser útiles en el diseño de componentes estructurales. En esta tesis doctoral se ha llevado a cabo un estudio minucioso con el fin de determinar los mecanismos de deformación y las propiedades mecánicas de fieltros punzonados fabricados con fibras de polietileno de ultra alto peso molecular. Los procesos de deformación y disipación de energía se han caracterizado en detalle por medio de una combinación de técnicas experimentales (ensayos mecánicos macroscópicos a velocidades de deformación cuasi-estáticas y dinámicas, impacto balístico, ensayos de extracción de una o múltiples fibras, microscopía óptica, tomografía computarizada de rayos X y difracción de rayos X de gran ángulo) que proporcionan información de los mecanismos dominantes a distintas escalas. Los ensayos mecánicos macroscópicos muestran que el fieltro presenta una resistencia y ductilidad excepcionales. El estado inicial de las fibras es curvado, y la carga se transmite por el fieltro a través de una red aleatoria e isótropa de nudos creada por el proceso de punzonamiento, resultando en la formación de una red activa de fibra. La rotación y el estirado de las fibras activas es seguido por el deslizamiento y extracción de la fibra de los puntos de anclaje mecánico. La mayor parte de la resistencia y la energía disipada es proporcionada por la extracción de las fibras activas de los nudos, y la fractura final tiene lugar como consecuencia del desenredo total de la red en una sección dada donde la deformación macroscópica se localiza. No obstante, aunque la distribución inicial de la orientación de las fibras es isótropa, las propiedades mecánicas resultantes (en términos de rigidez, resistencia y energía absorbida) son muy anisótropas. Los ensayos de extracción de múltiples fibras en diferentes orientaciones muestran que la estructura de los nudos conecta más fibras en la dirección transversal en comparación con la dirección de la máquina. La mejor interconectividad de las fibras a lo largo de la dirección transversal da lugar a una esqueleto activo de fibras más denso, mejorando las propiedades mecánicas. En términos de afinidad, los fieltros deformados a lo largo de la dirección transversal exhiben deformación afín (la deformación macroscópica transfiere directamente a las fibras por el material circundante), mientras que el fieltro deformado a lo largo de la dirección de la máquina presenta deformación no afín, y la mayor parte de la deformación macroscópica no es transmitida a las fibras. A partir de estas observaciones experimentales, se ha desarrollado un modelo constitutivo para fieltros punzonados confinados por enlaces mecánicos. El modelo considera los efectos de la deformación no afín, la conectividad anisótropa inducida durante el punzonamiento, la curvatura y re-orientación de la fibra, así como el desenredo y extracción de la fibra de los nudos. El modelo proporciona la respuesta de un mesodominio del material correspondiente al volumen asociado a un elemento finito, y se divide en dos bloques. El primer bloque representa el comportamiento de la red y establece la relación entre el gradiente de deformación macroscópico y la respuesta microscópica, obtenido a partir de la integración de la respuesta de las fibras en el mesodominio. El segundo bloque describe el comportamiento de la fibra, teniendo en cuenta las características de la deformación de cada familia de fibras en el mesodominio, incluyendo deformación no afín, estiramiento, deslizamiento y extracción. En la medida de lo posible, se ha asignado un significado físico claro a los parámetros del modelo, por lo que se pueden identificar por medio de ensayos independientes. Las simulaciones numéricas basadas en el modelo se adecúan a los resultados experimentales de ensayos cuasi-estáticos y balísticos desde el punto de vista de la respuesta mecánica macroscópica y de los micromecanismos de deformación. Además, suministran información adicional sobre la influencia de las características microstructurales (orientación de la fibra, conectividad de la fibra anisótropa, afinidad, etc) en el comportamiento mecánico de los fieltros punzonados. Nonwoven fabrics are a class of textile material made up of a disordered fiber network linked by either thermal, chemical or mechanical bonds. They present lower stiffness and strength (as well as processing cost) than the woven counterparts but much higher deformability and energy absorption capability and are used in many different engineering applications (including thermal insulation, geotextiles, fireproof layers, filtration and water absorption, ballistic impact, etc). In particular, needle-punched nonwoven fabrics manufactured with high strength fibers present an excellent performance for ballistic protection, providing the same ballistic protection with one third of the areal weight as compared to dry woven fabrics. Nevertheless, very little is known about their deformation and fracture micromechanisms at the microscopic level and how they contribute to the macroscopic mechanical properties. This lack of knowledge hinders the optimization of their mechanical performance and also limits the development of physically-based models of the mechanical behavior that can be used in the design of structural components with these materials. In this thesis, a thorough study was carried out to ascertain the micromechanisms of deformation and the mechanical properties of a needle-punched nonwoven fabric made up by ultra high molecular weight polyethylene fibers. The deformation and energy dissipation processes were characterized in detail by a combination of experimental techniques (macroscopic mechanical tests at quasi-static and high strain rates, ballistic impact, single fiber and multi fiber pull-out tests, optical microscopy, X-ray computed tomography and wide angle X-ray diffraction) that provided information of the dominant mechanisms at different length scales. The macroscopic mechanical tests showed that the nonwoven fabric presented an outstanding strength and energy absorption capacity. It was found that fibers were initially curved and the load was transferred within the fabric through the random and isotropic network of knots created by needlepunching, leading to the formation of an active fiber network. Uncurling and stretching of the active fibers was followed by fiber sliding and pull-out from the entanglement points. Most of the strength and energy dissipation was provided by the extraction of the active fibers from the knots and final fracture occurred by the total disentanglement of the fiber network in a given section at which the macroscopic deformation was localized. However, although the initial fiber orientation distribution was isotropic, the mechanical properties (in terms of stiffness, strength and energy absorption) were highly anisotropic. Pull-out tests of multiple fibers at different orientations showed that structure of the knots connected more fibers in the transverse direction as compared with the machine direction. The better fiber interconnection along the transverse direction led to a denser active fiber skeleton, enhancing the mechanical response. In terms of affinity, fabrics deformed along the transverse direction essentially displayed affine deformation {i.e. the macroscopic strain was directly transferred to the fibers by the surrounding fabric, while fabrics deformed along the machine direction underwent non-affine deformation, and most of the macroscopic strain was not transferred to the fibers. Based on these experimental observations, a constitutive model for the mechanical behavior of the mechanically-entangled nonwoven fiber network was developed. The model accounted for the effects of non-affine deformation, anisotropic connectivity induced by the entanglement points, fiber uncurling and re-orientation as well as fiber disentanglement and pull-out from the knots. The model provided the constitutive response for a mesodomain of the fabric corresponding to the volume associated to a finite element and is divided in two blocks. The first one was the network model which established the relationship between the macroscopic deformation gradient and the microscopic response obtained by integrating the response of the fibers in the mesodomain. The second one was the fiber model, which took into account the deformation features of each set of fibers in the mesodomain, including non-affinity, uncurling, pull-out and disentanglement. As far as possible, a clear physical meaning is given to the model parameters, so they can be identified by means of independent tests. The numerical simulations based on the model were in very good agreement with the experimental results of in-plane and ballistic mechanical response of the fabrics in terms of the macroscopic mechanical response and of the micromechanisms of deformation. In addition, it provided additional information about the influence of the microstructural features (fiber orientation, anisotropic fiber connectivity, affinity) on the mechanical performance of mechanically-entangled nonwoven fabrics.
Resumo:
In recent decades, full electric and hybrid electric vehicles have emerged as an alternative to conventional cars due to a range of factors, including environmental and economic aspects. These vehicles are the result of considerable efforts to seek ways of reducing the use of fossil fuel for vehicle propulsion. Sophisticated technologies such as hybrid and electric powertrains require careful study and optimization. Mathematical models play a key role at this point. Currently, many advanced mathematical analysis tools, as well as computer applications have been built for vehicle simulation purposes. Given the great interest of hybrid and electric powertrains, along with the increasing importance of reliable computer-based models, the author decided to integrate both aspects in the research purpose of this work. Furthermore, this is one of the first final degree projects held at the ETSII (Higher Technical School of Industrial Engineers) that covers the study of hybrid and electric propulsion systems. The present project is based on MBS3D 2.0, a specialized software for the dynamic simulation of multibody systems developed at the UPM Institute of Automobile Research (INSIA). Automobiles are a clear example of complex multibody systems, which are present in nearly every field of engineering. The work presented here benefits from the availability of MBS3D software. This program has proven to be a very efficient tool, with a highly developed underlying mathematical formulation. On this basis, the focus of this project is the extension of MBS3D features in order to be able to perform dynamic simulations of hybrid and electric vehicle models. This requires the joint simulation of the mechanical model of the vehicle, together with the model of the hybrid or electric powertrain. These sub-models belong to completely different physical domains. In fact the powertrain consists of energy storage systems, electrical machines and power electronics, connected to purely mechanical components (wheels, suspension, transmission, clutch…). The challenge today is to create a global vehicle model that is valid for computer simulation. Therefore, the main goal of this project is to apply co-simulation methodologies to a comprehensive model of an electric vehicle, where sub-models from different areas of engineering are coupled. The created electric vehicle (EV) model consists of a separately excited DC electric motor, a Li-ion battery pack, a DC/DC chopper converter and a multibody vehicle model. Co-simulation techniques allow car designers to simulate complex vehicle architectures and behaviors, which are usually difficult to implement in a real environment due to safety and/or economic reasons. In addition, multi-domain computational models help to detect the effects of different driving patterns and parameters and improve the models in a fast and effective way. Automotive designers can greatly benefit from a multidisciplinary approach of new hybrid and electric vehicles. In this case, the global electric vehicle model includes an electrical subsystem and a mechanical subsystem. The electrical subsystem consists of three basic components: electric motor, battery pack and power converter. A modular representation is used for building the dynamic model of the vehicle drivetrain. This means that every component of the drivetrain (submodule) is modeled separately and has its own general dynamic model, with clearly defined inputs and outputs. Then, all the particular submodules are assembled according to the drivetrain configuration and, in this way, the power flow across the components is completely determined. Dynamic models of electrical components are often based on equivalent circuits, where Kirchhoff’s voltage and current laws are applied to draw the algebraic and differential equations. Here, Randles circuit is used for dynamic modeling of the battery and the electric motor is modeled through the analysis of the equivalent circuit of a separately excited DC motor, where the power converter is included. The mechanical subsystem is defined by MBS3D equations. These equations consider the position, velocity and acceleration of all the bodies comprising the vehicle multibody system. MBS3D 2.0 is entirely written in MATLAB and the structure of the program has been thoroughly studied and understood by the author. MBS3D software is adapted according to the requirements of the applied co-simulation method. Some of the core functions are modified, such as integrator and graphics, and several auxiliary functions are added in order to compute the mathematical model of the electrical components. By coupling and co-simulating both subsystems, it is possible to evaluate the dynamic interaction among all the components of the drivetrain. ‘Tight-coupling’ method is used to cosimulate the sub-models. This approach integrates all subsystems simultaneously and the results of the integration are exchanged by function-call. This means that the integration is done jointly for the mechanical and the electrical subsystem, under a single integrator and then, the speed of integration is determined by the slower subsystem. Simulations are then used to show the performance of the developed EV model. However, this project focuses more on the validation of the computational and mathematical tool for electric and hybrid vehicle simulation. For this purpose, a detailed study and comparison of different integrators within the MATLAB environment is done. Consequently, the main efforts are directed towards the implementation of co-simulation techniques in MBS3D software. In this regard, it is not intended to create an extremely precise EV model in terms of real vehicle performance, although an acceptable level of accuracy is achieved. The gap between the EV model and the real system is filled, in a way, by introducing the gas and brake pedals input, which reflects the actual driver behavior. This input is included directly in the differential equations of the model, and determines the amount of current provided to the electric motor. For a separately excited DC motor, the rotor current is proportional to the traction torque delivered to the car wheels. Therefore, as it occurs in the case of real vehicle models, the propulsion torque in the mathematical model is controlled through acceleration and brake pedal commands. The designed transmission system also includes a reduction gear that adapts the torque coming for the motor drive and transfers it. The main contribution of this project is, therefore, the implementation of a new calculation path for the wheel torques, based on performance characteristics and outputs of the electric powertrain model. Originally, the wheel traction and braking torques were input to MBS3D through a vector directly computed by the user in a MATLAB script. Now, they are calculated as a function of the motor current which, in turn, depends on the current provided by the battery pack across the DC/DC chopper converter. The motor and battery currents and voltages are the solutions of the electrical ODE (Ordinary Differential Equation) system coupled to the multibody system. Simultaneously, the outputs of MBS3D model are the position, velocity and acceleration of the vehicle at all times. The motor shaft speed is computed from the output vehicle speed considering the wheel radius, the gear reduction ratio and the transmission efficiency. This motor shaft speed, somehow available from MBS3D model, is then introduced in the differential equations corresponding to the electrical subsystem. In this way, MBS3D and the electrical powertrain model are interconnected and both subsystems exchange values resulting as expected with tight-coupling approach.When programming mathematical models of complex systems, code optimization is a key step in the process. A way to improve the overall performance of the integration, making use of C/C++ as an alternative programming language, is described and implemented. Although this entails a higher computational burden, it leads to important advantages regarding cosimulation speed and stability. In order to do this, it is necessary to integrate MATLAB with another integrated development environment (IDE), where C/C++ code can be generated and executed. In this project, C/C++ files are programmed in Microsoft Visual Studio and the interface between both IDEs is created by building C/C++ MEX file functions. These programs contain functions or subroutines that can be dynamically linked and executed from MATLAB. This process achieves reductions in simulation time up to two orders of magnitude. The tests performed with different integrators, also reveal the stiff character of the differential equations corresponding to the electrical subsystem, and allow the improvement of the cosimulation process. When varying the parameters of the integration and/or the initial conditions of the problem, the solutions of the system of equations show better dynamic response and stability, depending on the integrator used. Several integrators, with variable and non-variable step-size, and for stiff and non-stiff problems are applied to the coupled ODE system. Then, the results are analyzed, compared and discussed. From all the above, the project can be divided into four main parts: 1. Creation of the equation-based electric vehicle model; 2. Programming, simulation and adjustment of the electric vehicle model; 3. Application of co-simulation methodologies to MBS3D and the electric powertrain subsystem; and 4. Code optimization and study of different integrators. Additionally, in order to deeply understand the context of the project, the first chapters include an introduction to basic vehicle dynamics, current classification of hybrid and electric vehicles and an explanation of the involved technologies such as brake energy regeneration, electric and non-electric propulsion systems for EVs and HEVs (hybrid electric vehicles) and their control strategies. Later, the problem of dynamic modeling of hybrid and electric vehicles is discussed. The integrated development environment and the simulation tool are also briefly described. The core chapters include an explanation of the major co-simulation methodologies and how they have been programmed and applied to the electric powertrain model together with the multibody system dynamic model. Finally, the last chapters summarize the main results and conclusions of the project and propose further research topics. In conclusion, co-simulation methodologies are applicable within the integrated development environments MATLAB and Visual Studio, and the simulation tool MBS3D 2.0, where equation-based models of multidisciplinary subsystems, consisting of mechanical and electrical components, are coupled and integrated in a very efficient way.
Resumo:
Evolutionary, pattern forming partial differential equations (PDEs) are often derived as limiting descriptions of microscopic, kinetic theory-based models of molecular processes (e.g., reaction and diffusion). The PDE dynamic behavior can be probed through direct simulation (time integration) or, more systematically, through stability/bifurcation calculations; time-stepper-based approaches, like the Recursive Projection Method [Shroff, G. M. & Keller, H. B. (1993) SIAM J. Numer. Anal. 30, 1099–1120] provide an attractive framework for the latter. We demonstrate an adaptation of this approach that allows for a direct, effective (“coarse”) bifurcation analysis of microscopic, kinetic-based models; this is illustrated through a comparative study of the FitzHugh-Nagumo PDE and of a corresponding Lattice–Boltzmann model.
Resumo:
As glândulas salivares são estruturas essenciais para a manutenção da homeostase da cavidade oral pela síntese e secreção do fluido salivar. A disfunção ou perda permanente das glândulas salivares causadas por radioterapia, doenças inflamatórias ou desordens congênitas elevam principalmente o risco de infecções da mucosa oral e de estruturas dentárias, além de potencialmente prejudicar funções fisiológicas como fala, mastigação e paladar, diretamente interferindo na qualidade de vida dos indivíduos afetados. Os tratamentos atualmente disponíveis são apenas paliativos, ressaltando a necessidade de se compreender melhor os processos embriogênicos a fim de desenvolver novas estratégias terapêuticas capazes de regenerar as glândulas salivares. O princípio da formação das glândulas salivares baseia-se na coordenação de diversos processos morfogenéticos, e este trabalho foca particularmente em investigar a formação do espaço luminal do sistema de ductos, uma vez que a adequada abertura dos lumens é um processo essencial para a secreção salivar. Relata-se que a remoção das células centrais dos cordões sólidos epiteliais por morte celular apoptótica é o principal mecanismo de abertura do espaço luminal dos futuros ductos glandulares em camundongos. Porém, pouco se sabe sobre o controle temporal da apoptose durante o desenvolvimento glandular e sobre seu comportamento em glândulas salivares humanas. Neste trabalho, o perfil de expressão de diversas proteínas envolvidas na cascata apoptótica em glândulas salivares fetais humanas foi analisado de acordo com cada estágio morfogenético por imunoistoquímica (Bax, Bak, Bad, Bid, Bcl-2, Bcl-x, Bcl-xL, caspase-3 clivada, caspases-6, -7 e -9, apaf-1, survivina e citocromo c). As análises semi-qualitativas resultaram em negatividade apenas para as proteínas Bcl-2, Bad, Bid e caspase-3 clivada em todas as fases de desenvolvimento. A expressão nuclear de Bax e Bak foi identificada em presumidos espaços luminais em estágios precoces, enquanto Bcl-xL foi o fator antiapoptótico da família Bcl-2 que exibiu expressão nuclear mais importante. Caspases-6, -7 e -9 foram positivas em todas as fases, e a ausência de caspase-3 clivada sugere caspase-7 como principal caspase efetora da apoptose em desenvolvimento de glândulas salivares humanas. Ambos os componentes do complexo apoptossomo foram positivos durante o desenvolvimento glandular, e o inibidor survivina demonstrou mais positividade nuclear em estágios mais avançados. Ao observar a expressão de reguladores apoptóticos durante o desenvolvimento glandular humano, foram realizados experimentos funcionais com culturas de tecido glandular de camundongos para avaliar o papel das caspases durante a formação desta estrutura. Inicialmente detectou-se a atividade apoptótica em glândulas salivares de camundongos albinos no centro dos cordões epiteliais primários a partir de estágios precoces de desenvolvimento através de TUNEL e caspase-3 clivada. A partir disso, foi realizada a inibição apoptótica funcional in vitro durante o mesmo período, que resultou em ductos significativamente mais amplos e em defeitos morfológicos importantes nas estruturas luminal e acinar. Este trabalho evidenciou portanto atividade apoptótica durante a formação de glândulas salivares humanas e de camundongo, expressando-se em fases mais precoces do que reportadas anteriormente. Além disso, a ausência de Bad e Bid indica que a via intrínseca está mais ativa que a extrínseca, e distintos perfis de expressão da maioria das moléculas sugere adicionais funções não-apoptóticas durante a morfogênese glandular.
Resumo:
Um dos aspectos regulatórios fundamentais para o mercado imobiliário no Brasil são os limites para obtenção de financiamento no Sistema Financeiro de Habitação. Esses limites podem ser definidos de forma a aumentar ou reduzir a oferta de crédito neste mercado, alterando o comportamento dos seus agentes e, com isso, o preço de mercado dos imóveis. Neste trabalho, propomos um modelo de formação de preços no mercado imobiliário brasileiro com base no comportamento dos agentes que o compõem. Os agentes vendedores têm comportamento heterogêneo e são influenciados pela demanda histórica, enquanto que os agentes compradores têm o seu comportamento determinado pela disponibilidade de crédito. Esta disponibilidade de crédito, por sua vez, é definida pelos limites para concessão de financiamento no Sistema Financeiro de Habitação. Verificamos que o processo markoviano que descreve preço de mercado converge para um sistema dinâmico determinístico quando o número de agentes aumenta, e analisamos o comportamento deste sistema dinâmico. Mostramos qual é a família de variáveis aleatórias que representa o comportamento dos agentes vendedores de forma que o sistema apresente um preço de equilíbrio não trivial, condizente com a realidade. Verificamos ainda que o preço de equilíbrio depende não só das regras de concessão de financiamento no Sistema Financeiro de Habitação, como também do preço de reserva dos compradores e da memória e da sensibilidade dos vendedores a alterações na demanda. A memória e a sensibilidade dos vendedores podem levar a oscilações de preços acima ou abaixo do preço de equilíbrio (típicas de processos de formação de bolhas); ou até mesmo a uma bifurcação de Neimark-Sacker, quando o sistema apresenta dinâmica oscilatória estável.
Resumo:
The optimization of chemical processes where the flowsheet topology is not kept fixed is a challenging discrete-continuous optimization problem. Usually, this task has been performed through equation based models. This approach presents several problems, as tedious and complicated component properties estimation or the handling of huge problems (with thousands of equations and variables). We propose a GDP approach as an alternative to the MINLP models coupled with a flowsheet program. The novelty of this approach relies on using a commercial modular process simulator where the superstructure is drawn directly on the graphical use interface of the simulator. This methodology takes advantage of modular process simulators (specially tailored numerical methods, reliability, and robustness) and the flexibility of the GDP formulation for the modeling and solution. The optimization tool proposed is successfully applied to the synthesis of a methanol plant where different alternatives are available for the streams, equipment and process conditions.
Resumo:
ABSTRACT: With this article, we aim to offer a conceptual synthesis of some of the most important developments in past decades on the subject of talent in sport, while also helping sports stakeholders, particularly managers and coaches, to recognize and apply these conclusions in their practices. The article starts with a brief historical review, which explores how there has been a shift from a talent detection perspective to a talent development perspective and to a holistic vision of athletes and their background context. Secondly, the article presents an overview of the main theoretical models put forward in literature on sport psychology, including career-transition-based models and talent-and-expertise-based models. Finally, as the conceptual model most widely referred to in literature, a detailed analysis of the Development Model of Sports Participation (Côté, Baker & Abernethy, 2007), is made, especially with regard to development processes relating to standards of practice (e.g. diversification and specialization) and psychosocial influences, aspects that form the basis of all-round athlete development.
Resumo:
The organizational structure of the companies in the biomass energy sector, regarding the supply chain management services, can be greatly improved through the use of software decision support tools. These tools should be able to provide real-time alternative scenarios when deviations from the initial production plans are observed. To make this possible it is necessary to have representative production chain process models where several scenarios and solutions can be evaluated accurately. Due to its nature, this type of process is more adequately represented by means of event-based models. In particular, this work presents the modelling of a typical biomass production chain using the computing platform SIMEVENTS. Throughout the article details about the conceptual model, as well as simulation results, are provided
Embracing english as a lingua franca : learning from portuguese users of english in higher education
Resumo:
Tese de doutoramento, Linguística (Linguística Aplicada), Universidade de Lisboa, Faculdade de Letras, 2016
Resumo:
This paper aims to identify drivers of physical capital adjustments in agriculture. It begins with a review of some of the most important theories and modelling approaches regarding firms’ adjustments of physical capital, ranging from output-based models to more recent approaches that consider irreversibility and uncertainty. Thereafter, it is suggested that determinants of physical capital adjustments in agriculture can be divided into three main groups, namely drivers related to: i) expected (risk-adjusted) profit, ii) expected societal benefits and costs and iii) expected private nonpecuniary benefits and costs. The discussion that follows focuses on the determinants belonging to the first group and covers aspects related to product market conditions, technological conditions, financial conditions and the role of firm structure and organization. Furthermore, the role of subjective beliefs is emphasized. The main part of this paper is concerned with the demand side of the physical capital market and one section also briefly discusses some aspects related to supply of farm assets.