958 resultados para Insects, Injurious and beneficial.


Relevância:

40.00% 40.00%

Publicador:

Resumo:

The aim of this contract was to finalise in vitro rearing on artificial diets of entomophagous insects useful to control insect pests mainly in greenhouses through an analytical and rational approach. The work focuses on the development and optimisation of artificial diets for one coccinellid (Harmonia axyridis), two heteropteran predators (Orius laevigatus, Dicyphus tamaninii), and a braconid parasitoid of aphids (Aphidius ervi). The definition of the artificial diets was based on biochemical analyses of their natural food (aphids) or substitution food for the predators (Ephestia kuehniella eggs). Reliable quality control parameters of the entomophages produced were used in order to adjust dietary composition and formulation of the different diets tested.

Relevância:

40.00% 40.00%

Publicador:

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The eggs from oviparous organisms contain large amounts of vitellus, or yolk, wich are utilized by the growing embryo. Vitellogenesis is the process of vitellus accumulation and involves massive heterosynthetic synthesis of the protein vitellogenin (Vg) and its deposition in the oocyte. This work summarizes data on Vg structure, synthesis, uptake by oocytes and its fate during embryogenesis. The hormonal control of vitellogenesis and its tissue, sex and temporal regulation are also discussed. Where it is available, data on structure and expression of Vg-coding genes are reviewed. Insect vitellogenesis is priorized although other oviparous animal groups outside insects are also treated.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This review stresses the importance of studies that will provide a basic understanding of the pathology of parasite-infected vector insects. This knowledge should be a vital component of the very focussed initiatives currently being funded in the areas of vector control. Vector fecundity reduction is discussed as an example of such pathology. Underlying mechanisms are being investigated in a model system, Hymenolepis diminuta-infected Tenebrio molitor and in Onchocerca-infected blackflies and Plasmodium-infected Anopheles stephensi. In all cases, host vitellogenesis is disrupted by the parasite and, in the tapeworm/beetle model, interaction between the parasite and the endocrine control of the insect's reproductive physiology has been demonstrated.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this work we report four different destructive and non-destructive methods for detecting picorna-like virus particles in triatomines. The methods are based on direct observation under transmission electron microscope and they consist of four ways to prepare samples of presumable infected material. The samples are prepared processing dead or alive insect parts, or even dry or fresh insect feces. The methods can be used as analytical or preparative techniques, for quantifying virus infection and checking virus integrity as well. In this work the four methods are applied in order to detect Triatoma virus (TrV) particles in T. infestans colonies.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A brief historical overview is given of the most relevant taxonomic studies of insect groups vectors of transmissible diseases in Brazil, from the "heroic" times of the foundation of the Instituto Oswaldo Cruz in Rio de Janeiro up to the present. The following orders are considered: Phthiraptera (Anoplura, Amblycera and Ischnocera), Hemiptera (Reduviidae: Triatominae), Siphonaptera and Diptera (Culicidae, Ceratopogonidae, Psychodidae: Phlebotominae, Simuliidae, Tabanidae, Chloropidae and Muscidae). The most important Brazilian collections of each group are cited.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Division of labour is one of the most prominent features of social insects. The efficient allocation of individuals to different tasks requires dynamic adjustment in response to environmental perturbations. Theoretical models suggest that the colony-level flexibility in responding to external changes and internal perturbation may depend on the within-colony genetic diversity, which is affected by the number of breeding individuals. However, these models have not considered the genetic architecture underlying the propensity of workers to perform the various tasks. Here, we investigated how both within-colony genetic variability (stemming from variation in the number of matings by queens) and the number of genes influencing the stimulus (threshold) for a given task at which workers begin to perform that task jointly influence task allocation efficiency. We used a numerical agent-based model to investigate the situation where workers had to perform either a regulatory task or a foraging task. One hundred generations of artificial selection in populations consisting of 500 colonies revealed that an increased number of matings always improved colony performance, whatever the number of loci encoding the thresholds of the regulatory and foraging tasks. However, the beneficial effect of additional matings was particularly important when the genetic architecture of queens comprised one or a few genes for the foraging task's threshold. By contrast, a higher number of genes encoding the foraging task reduced colony performance with the detrimental effect being stronger when queens had mated with several males. Finally, the number of genes encoding the threshold for the regulatory task only had a minor effect on colony performance. Overall, our numerical experiments support the importance of mating frequency on efficiency of division of labour and also reveal complex interactions between the number of matings and genetic architecture.