976 resultados para Insect Colonies
Resumo:
Summary Plants often respond to pathogen or insect attack by inducing the synthesis of toxic compounds such as phytoalexins and glucosinolates (GS). The Arabidopsis mutant pad2-1 has reduced levels of the phytoalexin camalexin and is known for its increased susceptibility to fungal and bacterial pathogens. We found that pad2-1 is also more susceptible to the generalist insect Spodoptera littoralis but not to the specialist Pieris brassicae. The PAD2 gene encodes a gamma-glutamylcysteine synthetase that is involved in glutathione (GSH) synthesis, and consequently the pad2-1 mutant contains about 20% of the GSH found in wild-type plants. Lower GSH levels of pad2-1 were correlated with reduced accumulation of the two major indole and aliphatic GSs of Arabidopsis, indolyl-3-methyl-GS and 4-methylsulfinylbutyl-GS, in response to insect feeding. This effect was specific to GSH, was not complemented by treatment of pad2-1 with the strong reducing agent dithiothreitol, and was not observed with the ascorbate-deficient mutant vtc1-1. In contrast to the jasmonate-insensitive mutant coi1-1, expression of insect-regulated and GS biosynthesis genes was not affected in pad2-1. Our data suggest a crucial role for GSH in GS biosynthesis and insect resistance.
Resumo:
Inducible defenses, which provide enhanced resistance after initial attack, are nearly universal in plants. This defense signaling cascade is mediated by the synthesis, movement, and perception of jasmonic acid and related plant metabolites. To characterize the long-term persistence of plant immunity, we challenged Arabidopsis (Arabidopsis thaliana) and tomato (Solanum lycopersicum) with caterpillar herbivory, application of methyl jasmonate, or mechanical damage during vegetative growth and assessed plant resistance in subsequent generations. Here, we show that induced resistance was associated with transgenerational priming of jasmonic acid-dependent defense responses in both species, caused caterpillars to grow up to 50% smaller than on control plants, and persisted for two generations in Arabidopsis. Arabidopsis mutants that are deficient in jasmonate perception (coronatine insensitive1) or in the biogenesis of small interfering RNA (dicer-like2 dicer-like3 dicer-like4 and nuclear RNA polymerase d2a nuclear RNA polymerase d2b) do not exhibit inherited resistance. The observation of inherited resistance in both the Brassicaceae and Solanaceae suggests that this trait may be more widely distributed in plants. Epigenetic resistance to herbivory thus represents a phenotypically plastic mechanism for enhanced defense across generations.
Resumo:
Selostus: Monoterpeenit kasvinsuojelussa: erityisesti limoneenin vaikutus eri eliöryhmiin
Resumo:
The objective of this research was to evaluate the effect of the insect resistant soybean genotype IAC 17 on reproductive characteristics of Podisus nigrispinus (Dallas) (Heteroptera: Pentatomidae) females compared to the soybean insect susceptible genotype UFV 16. Treatments were: T1) females of P. nigrispinus fed on plants of the UFV 16 and Anticarsia gemmatalis Hübner (Lepidoptera: Noctuidae) caterpillars reared on leaves of this variety; T2) females of P. nigrispinus fed on plants of the IAC 17 and A. gemmatalis caterpillars reared on leaves of this variety. Longevity of females, pre-oviposition, oviposition and pos-oviposition periods, number of eggs and egg masses/female, egg weight, interval between egg mass laying, number of eggs/egg mass, percentage of nymphs, number of nymphs/female and total number of prey killed/female of P. nigrispinus were evaluated. Most of the characteristics evaluated showed similar results between treatments, but the oviposition period was longer for females reared on the resistant genotype than on the susceptible one and the percentage of total females that laid eggs was lower on the IAC 17. Also, the resistant genotype caused higher mortality of P. nigrispinus females at the beginning of its adult stage and egg production by females of this predator was better spread along its adult stage with this resistant genotype. On the other hand, results suggest no effect of the resistant genotype on the offspring of this predator.
Resumo:
In social insects the number of queens per nest varies greatly. One of the proximate causes of this variation may be that queens produced by multiple-queen colonies are generally smaller, and might thus be unable to found new colonies independently. We examined whether the social origin of queens and males influenced the colony-founding success of queens in the socially polymorphic ant Formica selysi. Queens originating from single-queen and multiple-queen colonies had similar survival rates and colony-founding success, be they alone or in two-queen associations. During the first 5 months, queens originating from single-queen colonies gave rise to more workers than queens originating from multiple-queen colonies. Pairs of queens were also more productive than single queens. However, these differences in productivity were transient, as all types of colonies had reached a similar size after 15 months. Mating between social forms was possible and did not decrease queen survival or colony productivity, compared to mating within social forms. Overall, these results indicate that queens from each social form are able to found colonies independently, at least under laboratory conditions. Moreover, gene flow between social forms is not restricted by mating or genetic incompatibilities. This flexibility in mating and colony founding helps to explain the maintenance of alternative social structures in sympatry and the absence of genetic differentiation between social forms.
Resumo:
Although they constitute an inert stage of the insect's life, eggs trigger plant defences that lead to egg mortality or attraction of egg parasitoids. We recently found that salicylic acid (SA) accumulates in response to oviposition by the Large White butterfly Pieris brassicae, both in local and systemic leaves, and that plants activate a response that is similar to the recognition of pathogen-associated molecular patterns (PAMPs), which are involved in PAMP-triggered immunity (PTI). Here we discovered that natural oviposition by P. brassicae or treatment with egg extract inhibit growth of different Pseudomonas syringae strains in Arabidopsis through the activation of a systemic acquired resistance (SAR). This egg-induced SAR involves the metabolic SAR signal pipecolic acid, depends on ALD1 and FMO1, and is accompanied by a stronger induction of defence genes upon secondary infection. Although P. brassicae larvae showed a reduced performance when feeding on Pseudomonas syringae-infected plants, this effect was less pronounced when infected plants had been previously oviposited. Altogether, our results indicate that egg-induced SAR might have evolved as a strategy to prevent the detrimental effect of bacterial pathogens on feeding larvae.
Resumo:
1. Accumulating evidence indicates that plant resistance against above-ground herbivores can be affected by the presence of arbuscular mycorrhizal fungi (AMF) in association with the host plant. Little is known, however, about how AMF composition can influence herbivore choice to feed on a particular plant. 2. Unravelling the preference-performance hypothesis in a multitrophic context is needed to expand our knowledge of complex multitrophic interactions in natural systems. If given mycorrhizal fungal genotypes increase attractiveness for a herbivore (reduced plant resistance), then the benefits of increased unpalatability provided by the mycorrhizal fungi (increased plant resistance) might be outweighed by the increased herbivore recruitment. 3. This was addressed by designing three experiments to test the effects of different AMF genotypes, inoculated either alone or in combination, to measure intraspecific AMF effects on plant resistance and insect herbivore preference. Using strawberry (Fragaria vesca L.) plants that were colonised by eight different combinations of Rhizophagus irregularis isolates, we measured effects on plant growth, insect growth and survival, as well as feeding preferences of a generalist herbivore caterpillar (Spodoptera littoralis Boisduval). 4. Overall, it was found that: (i) AMF influenced plant resistance in an AMF genotype-specific manner; (ii) some AMF inoculations decreased insect performance; (iii) insects preferentially chose to feed more on leaves originating from non-mycorrhizal plants; but also that (iv) in a whole plant bioassay, insects preferentially chose the biggest plant, regardless of their mycorrhizal status. 5. Therefore, AMF-mediated trade-offs between growth and resistance against herbivores have been shown. Such trade-offs, particularly driven by plant attractiveness to herbivores, buffer the positive effects of the mycorrhizal symbiosis on enhanced plant growth.
Resumo:
SUMMARY : Parasites and sociality in ants This thesis investigates the complex relationships between sociality, defences against parasites and the regulation of social structures. We studied how fungal parasites influenced colony organization, collective defences and social immunity in the ant Formica selysi. We first describe the diversity and prevalence of fungal pathogens associated with ant nests. The richness of fungal parasites community may increase the risk of multiple infections and select for a diversification of anti-parasitic defences in ants. Collective defences are powerful means to combat parasites, but can also increase the risk of disease transmission. Here, we showed that allo-grooming (mutual cleaning) was directed towards every returning individuals, be they contaminated or not. This collective behaviour removed conidia more efficiently than self-grooming but did not improve the survival of contaminated individuals. This suggests that allo-grooming may rather protect the group than cure contaminated individuals. It may also permit "social vaccination" if a contact with contaminated ants protects groomers frorn a second fungal exposure. Social transfer of immunity is an emerging theme in insect immunology. Here, we showed that ants in contact with an ant from a different genetic lineage had a higher disease resistance. We also found that naïve ants had a higher resistance after a contact with an immunized ant. This suggests that a transfer of resistance is possible and that "social vaccination" may improve the resistance of the group. However, it remains unclear whether repeated exposure to parasites may also increase the resistance of infected individuals themselves. lmmune memory in invertebrates is still debated. We tested whether immune priming against fungal parasite arose in ants and whether it was strain-specific. We found no evidence of immune priming. Naïve and immunized ants had a similar survival when infected. Together with our previous results, this suggests that ants have evolved efficient collective anti-fungal defences but that these defences aim at protecting the group rather than the contaminated individuals. ln colonies of our study population, there is a strong variation in the number of breeders. This is associated with important changes in life-history traits like demography or queen and worker body size. In the second part of the thesis, we investigated how social structures evolved and were maintained. We showed that queens from monogyne and polygyne colonies were able to found new colonies both alone or in association. We also found that there was no difference between monogyne and polygyne colonies in the acceptance of additional queens. These results suggest that a high plasticity has been maintained in this population, which may permit to adapt rapidly to changing environmental conditions. RESUME : Parasites et socialité chez les fourmis Durant cette thèse, nous avons étudié comment la socialité apporte de nouvelles réponses a des problèmes complexes telle que la défense contre les parasites ou l'organisation de la vie en groupe. Nous avons choisi comme modèle la fourmi Formica selysi et ses champignons pathogènes. Nous avons d'abord montré que la diversité et la prévalence de champignons pathogènes associés aux nids de fourmis étaient très élevées. Cela a pu pousser les fourmis à diversifier le champ de leur défenses anti-parasitaires afin d'éviter les infections multiples, La socialité a en particulier permis l'évolution de défenses collectives qui pourraient être plus efficaces que les défenses individuelles. Nous nous sommes donc intéressés de plus près aux défenses collectives et avons étudié quels en étaient les coûts et les bénéfices pour le groupe et pour ses membres. Nous avons trouvé que les fourmis nettoyaient tous les individus entrant dans la colonie, qu'ils soient contaminés ou non. Cela permettait d'ôter plus de spores que le nettoyage individuel et n'augmentait pas la transmission de maladie. Cependant, le nettoyage mutuel n'augmentait pas non plus la survie des individus contaminés. ll se pourrait donc que ce comportement serve plutôt a éviter une dissémination de la maladie qu'à soigner les individus contaminés. Le nettoyage mutuel pourrait aussi permettre aux individus sains d'avoir un premier contact non-létal avec un parasite et d'être vaccinés contre une future exposition. Cette hypothèse a été soutenue par une expérience dans laquelle nous avons montré que le contact avec une fourmi immunisée permettait d'augmenter la résistance d'individus naïfs. Les fourmis avaient aussi une meilleure résistance lorsqu'elles étaient en contact avec une fourmi provenant d'une autre lignée génétique. Cette "vaccination sociale" pourrait permettre d'une part d'augmenter le nombre d'espèce de parasites contre lesquelles le groupe serait protégé et d'autre part de faire l'économie d'autres défenses individuelles telles que la réponse immunitaire. Nous avons testé si les fourmis étaient elles-mêmes "vaccinées", c'est-à-dire, si elles exprimaient une mémoire immunitaire après un premier contact avec un champignon parasite. Nous n'avons trouvé aucune différence de survie entre les individus naïfs et immunisés ce qui suggère les fourmis favorisent d'autres défenses que la mémoire immunitaire contre les champignons entomopathogènes. Cela suggère également que les comportements coopératifs anti-parasitaires pourraient compléter, voire remplacer les défenses individuelles. La socialité telle qu'elle est pratiquée par les fourmis pose un autre problème de poids qui est celui de savoir combien d'individus se reproduisent. En effet, si les ouvrières sont stériles, le nombre de reines assurant la reproduction peut varier considérablement. Dans la population de E sebrsi étudiée, les colonies monogynes (une reine) co-existent avec des colonies polygynes (plusieurs reines) dans le même habitat. Nous nous sommes demandés si ces structures sociales étaient fixes ou si un changement de l'une à l'autre était possible. Pour cela nous avons comparé la fondation de nouvelles colonies par les jeunes reines issues de colonies monogynes et polygynes. Nous avons également observé si l'acceptation de nouvelles reines était possible dans les deux types de colonies. Nous n'avons trouvé aucune différence entre les deux types de colonies. Cela suggère qu'un changement est possible et que l'évolution des structures sociales est un processus dynamique. Cela pourrait être dû à l'habitat particulièrement changeant dans lequel se trouve notre population qui exigerait d'être capable de s'adapter très rapidement a de nouvelles conditions.
Resumo:
Ionotropic glutamate receptors (iGluRs) are a highly conserved family of ligand-gated ion channels present in animals, plants, and bacteria, which are best characterized for their roles in synaptic communication in vertebrate nervous systems. A variant subfamily of iGluRs, the Ionotropic Receptors (IRs), was recently identified as a new class of olfactory receptors in the fruit fly, Drosophila melanogaster, hinting at a broader function of this ion channel family in detection of environmental, as well as intercellular, chemical signals. Here, we investigate the origin and evolution of IRs by comprehensive evolutionary genomics and in situ expression analysis. In marked contrast to the insect-specific Odorant Receptor family, we show that IRs are expressed in olfactory organs across Protostomia--a major branch of the animal kingdom that encompasses arthropods, nematodes, and molluscs--indicating that they represent an ancestral protostome chemosensory receptor family. Two subfamilies of IRs are distinguished: conserved "antennal IRs," which likely define the first olfactory receptor family of insects, and species-specific "divergent IRs," which are expressed in peripheral and internal gustatory neurons, implicating this family in taste and food assessment. Comparative analysis of drosophilid IRs reveals the selective forces that have shaped the repertoires in flies with distinct chemosensory preferences. Examination of IR gene structure and genomic distribution suggests both non-allelic homologous recombination and retroposition contributed to the expansion of this multigene family. Together, these findings lay a foundation for functional analysis of these receptors in both neurobiological and evolutionary studies. Furthermore, this work identifies novel targets for manipulating chemosensory-driven behaviours of agricultural pests and disease vectors.