904 resultados para Inorganic UV filter
Resumo:
Blood doping involves the use of products that enhance the uptake, transport, or delivery of oxygen to the blood. One approach uses artificial oxygen carriers, known as hemoglobin-based oxygen carriers (HBOCs). This study describes an analytical strategy based on CE for detecting intact HBOCs in plasma samples collected for doping control. On-capillary detection was performed by UV/Vis at 415 nm, which offered detection selectivity for hemoproteins (such as hemoglobin and HBOCs). On-line ESI-MS detection with a TOF analyzer was further used to provide accurate masses on CE peaks and to confirm the presence of HBOCs. An immunodepletion sample preparation step was mandatory prior to analysis, in order to remove most abundant proteins that interfered with CE separation and altered the ESI process. This analytical method was successfully applied to plasma samples enriched with Oxyglobin, a commercially available HBOC used for veterinary purposes. Detection limits of 0.20 and 0.45 g/dL were achieved in plasma for CE-UV/Vis at 415 nm and CE-ESI-TOF/MS, respectively.
Resumo:
In agricultural systems the N-NH4+ and N-NO3- contents is significantly affected by soil management. This study investigated the dynamics of inorganic nitrogen (N; NH4+ and NO3-) in an experimental evaluation of soil management systems (SMSs) adopted in 1988 at the experimental station of the ABC Foundation in Ponta Grossa, in the Central South region of the State of Paraná. The objective of this study was to evaluate the changes in N-NH4+ and N-NO3- flux in the surface layer of a Red Latosol arising from SMSs over a 12-month period. The experiment was arranged in a completely randomized block design in split plots, in three replications. The plots consisted of the following SMSs: 1) conventional tillage (CT); 2) minimum tillage (MT); 3) no-tillage with chisel plow every three years (NT CH); and 4) continuous no-tillage (CNT). To evaluate the dynamics of inorganic N, the subplots represented samplings (11 sampling times, T1 - T11). The ammonium N (N-NH4+) and nitric N (N-NO3-) contents were higher in systems with reduced tillage (MT and NT CH) and without tillage (CNT) than in the CT system. In the period from October 2003 to February 2004, the N-NH4+ was higher than the N-NO3- soil content. Conversely, in the period from May 2004 to July 2004, the N-NO3- was higher than the N-NH4+ content. The greatest fluctuation in the N-NH4+ and N-NO3- contents occurred in the 0-2.5 cm layer, and the highest peak in the N-NH4+ and N-NO3- concentrations occurred after the surface application of N. Both N-NH4+ and N-NO3- were strongly correlated with the soil organic C content, which indicated that these properties vary together in the system.
Resumo:
The cultivation of crops with different capacity of P uptake and use under long-term soil tillage systems can affect the distribution of P cycling and inorganic forms in the soil, as a result of higher or lower use efficiency of P applied in fertilizers. The purpose of this study was to evaluate the effect of long-term cultivation of different winter species under tillage systems on the distribution of inorganic P forms in the soil. In 1986, the experiment was initiated with six winter crops (blue lupin, hairy vetch, oat, oilseed radish, wheat and fallow) on a Rhodic Hapludox in southwestern Paraná, under no-tillage (NT) and conventional tillage (CT). The application of phosphate fertilizer in NT rows increased inorganic P in the labile and moderately labile forms, and soil disturbance in CT redistributed the applied P in the deeper layers, increasing the moderately labile P concentration in the subsurface layers. Black oat and blue lupin were the most efficient P-recyclers and under NT, they increased the labile P content in the soil surface layers.
Resumo:
The response of sugarcane to application of micronutrients is still not very well known. In view of the need for this information, the aim of this study was to evaluate the application of the micronutrients Zn, Cu, Mn, Fe, B, and Mo to plant cane in three soils, with and without application of filter cake. This study consisted of three experiments performed in the State of São Paulo, Brazil, (in Igaraçu do Tiete, on an Oxisol; in Santa Maria da Serra, on an Entisol, both in the 2008/2009 growing season; and in Mirassol, on an Ultisol, in the 2009/2010 growing season) in a randomized block design with four replications with a 8 x 2 factorial combination of micronutrients (1 - no application/control, 2 - addition of Zn, 3 - addition of Cu, 4 - addition of Mn 5 - addition of Fe, 6 - addition of B, 7 - addition of Mo, 8 - Addition of Zn, Cu, Mn, Fe, B, and Mo) and filter cake (0 and 30 t ha-1 of filter cake) in the furrow at planting. The application of filter cake was more efficient than of Borax in raising leaf B concentration to sufficiency levels for sugarcane in the Entisol, and it increased mean stalk yield in the Oxisol. In areas without filter cake application, leaf concentrations were not affected by the application of Zn, Cu, Mn, Fe, B, and Mo in the furrow at planting; however, Zn and B induced an increase in stalk and sugar yield in micronutrient-poor sandy soil.
Resumo:
A method of making a multiple matched filter which allows the recognition of different characters in successive planes in simple conditions is proposed. The generation of the filter is based on recording on the same plate the Fourier transforms of the different patterns to be recognized, each of which is affected by different spherical phase factors because the patterns have been placed at different distances from the lens. This is proved by means of experiments with a triple filter which allows satisfactory recognition of three characters.
Resumo:
Natural images are characterized by the multiscaling properties of their contrast gradient, in addition to their power spectrum. In this Letter we show that those properties uniquely define an intrinsic wavelet and present a suitable technique to obtain it from an ensemble of images. Once this wavelet is known, images can be represented as expansions in the associated wavelet basis. The resulting code has the remarkable properties that it separates independent features at different resolution level, reducing the redundancy, and remains essentially unchanged under changes in the power spectrum. The possible generalization of this representation to other systems is discussed.
Resumo:
ABSTRACT High cost and long time required to determine a retention curve by the conventional methods of the Richards Chamber and Haines Funnel limit its use; therefore, alternative methods to facilitate this routine are needed. The filter paper method to determine the soil water retention curve was evaluated and compared to the conventional method. Undisturbed samples were collected from five different soils. Using a Haines Funnel and Richards Chamber, moisture content was obtained for tensions of 2; 4; 6; 8; 10; 33; 100; 300; 700; and 1,500 kPa. In the filter paper test, the soil matric potential was obtained from the filter-paper calibration equation, and the moisture subsequently determined based on the gravimetric difference. The van Genuchten model was fitted to the observed data of soil matric potential versus moisture. Moisture values of the conventional and the filter paper methods, estimated by the van Genuchten model, were compared. The filter paper method, with R2 of 0.99, can be used to determine water retention curves of agricultural soils as an alternative to the conventional method.
Resumo:
We launched a cryptoendolithic habitat, made of a gneissic impactite inoculated with Chroococcidiopsis sp., into Earth orbit. After orbiting the Earth for 16 days, the rock entered the Earth's atmosphere and was recovered in Kazakhstan. The heat of entry ablated and heated the rock to a temperature well above the upper temperature limit for life to below the depth at which light levels are insufficient for photosynthetic organisms ( approximately 5 mm), thus killing all of its photosynthetic inhabitants. This experiment shows that atmospheric transit acts as a strong biogeographical dispersal filter to the interplanetary transfer of photosynthesis. Following atmospheric entry we found that a transparent, glassy fusion crust had formed on the outside of the rock. Re-inoculated Chroococcidiopsis grew preferentially under the fusion crust in the relatively unaltered gneiss beneath. Organisms under the fusion grew approximately twice as fast as the organisms on the control rock. Thus, the biologically destructive effects of atmospheric transit can generate entirely novel and improved endolithic habitats for organisms on the destination planetary body that survive the dispersal filter. The experiment advances our understanding of how island biogeography works on the interplanetary scale.
Resumo:
The RuvABC proteins of Escherichia coli process recombination intermediates during genetic recombination and DNA repair. RuvA and RuvB promote branch migration of Holliday junctions, a process that extends heteroduplex DNA. Together with RuvC, they form a RuvABC complex capable of Holliday junction resolution. Branch migration by RuvAB is mediated by RuvB, a hexameric ring protein that acts as an ATP-driven molecular pump. To gain insight into the mechanism of branch migration, random mutations were introduced into the ruvB gene by PCR and a collection of mutant alleles were obtained. Mutation of leucine 268 to serine resulted in a severe UV-sensitive phenotype, characteristic of a ruv defect. Here, we report a biochemical analysis of the mutant protein RuvBL268S. Unexpectedly, the purified protein is fully active in vitro with regard to its ATPase, DNA binding and DNA unwinding activities. It also promotes efficient branch migration in combination with RuvA, and forms functional RuvABC-Holliday junction resolvase complexes. These results indicate that RuvB may perform some additional, and as yet undefined, function that is necessary for cell survival after UV-irradiation.
Resumo:
Nucleotide excision repair (NER) is an evolutionary conserved DNA repair system that is essential for the removal of UV-induced DNA damage. In this study we investigated how NER is compartmentalized in the interphase nucleus of human cells at the ultrastructural level by using electron microscopy in combination with immunogold labeling. We analyzed the role of two nuclear compartments: condensed chromatin domains and the perichromatin region. The latter contains transcriptionally active and partly decondensed chromatin at the surface of condensed chromatin domains. We studied the distribution of the damage-recognition protein XPC and of XPA, which is a central component of the chromatin-associated NER complex. Both XPC and XPA rapidly accumulate in the perichromatin region after UV irradiation, whereas only XPC is also moderately enriched in condensed chromatin domains. These observations suggest that DNA damage is detected by XPC throughout condensed chromatin domains, whereas DNA-repair complexes seem preferentially assembled in the perichromatin region. We propose that UV-damaged DNA inside condensed chromatin domains is relocated to the perichromatin region, similar to what has been shown for DNA replication. In support of this, we provide evidence that UV-damaged chromatin domains undergo expansion, which might facilitate the translocation process. Our results offer novel insight into the dynamic spatial organization of DNA repair in the human cell nucleus.
Resumo:
Ami, ou ennemi, le soleil ? Qui n'a jamais maudit un petit excès de bain de soleil sanctionné par une peau brûlée ? Mais en hiver, quand il se fait rare, l'huile de foie de morue est la panacée que prescrit la sagesse de nos grands-mères pour remplacer la vitamine D qu'en temps normal il nous aide à synthétiser. Pour pouvoir faire le point sur les dangers et les bénéfices du rayonnement solaire, il faut connaître son intensité et en particulier celle du rayonnement ultraviolet (UV) qui a une forte influence sur la santé.Durant ces dernières décades, une forte augmentation des cancers de la peau a été constatée dans les pays développés. La communauté médicale suppose que cette augmentation est liée à une plus forte exposition aux UV, qui serait elle-même due à des changements d'habitudes de la population (engouement pour les loisirs en plein air, pour les vacances sous les tropiques, popularité du bronzage, etc.) et éventuellement à un accroissement du rayonnement UV. [Auteurs]