967 resultados para Innate Immune-system


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Gout is caused by the deposition of monosodium urate crystals (MSU) in tissue and provokes a local inflammatory reaction. It is the most common form of inflammatory arthritis in the elderly. The formation of MSU crystals is facilitated by hyperuricemia. In the last two decades, both hyperuricemia and gout have increased markedly and similar trends in the epidemiology of the metabolic syndrome have been observed. Recent studies provide new insights into uric acid metabolism in the kidneys as well as possible links between hyperuricemia and hypertension. MSU crystals provoke inflammation by activating leukocytes to produce inflammatory cytokines and other inflammatory mediators. The uptake of MSU crystals by monocytes involves interactions with Toll-like receptors (TLR-2 and TLR-4) and CD14, components of the innate immune system. Intracellularly, MSU crystals activate inflammasomes to activate pro-IL-1 (interleukin 1) processing to yield mature IL-1beta. The inflammatory effects of MSU are IL-1-dependent and can be blocked by IL-1 inhibitors. These advances provide new therapeutic targets to treat hyperuricemia and gout.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Invasive aspergillosis is one of the most important infections in hematopoietic stem cell transplant recipients, with an incidence rate of 5-15% and an associated mortality of 30-60%. It remains unclear why certain patients develop invasive aspergillosis while others, undergoing identical transplant regimen and similar post transplant immunosuppression, do not. Over the last decade, pattern recognition receptors such as Toll-like receptors (TLRs) and the C-type lectin receptors (CLRs) have emerged as critical components of the innate immune system. By detecting specific molecular patterns from invading microbes and initiating inflammatory and subsequent adaptive immune responses, pattern recognition receptors are strategically located at the molecular interface of hosts and pathogens. Polymorphisms in pattern recognition receptors and downstream signaling molecules have been associated with increased or decreased susceptibility to infections, suggesting that their detection may have an increasing impact on the treatment and prevention of infectious diseases in the coming years. Infectious risk stratification may be particularly relevant for patients with hematologic malignancies, because of the high prevalence and severity of infections in this population. This review summarizes the innate immune mechanisms involved in Aspergillus fumigatus detection and the role of host genetic polymorphisms in susceptibility to invasive aspergillosis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The innate immune system relies on its capacity to rapidly detect invading pathogenic microbes as foreign and to eliminate them. The discovery of Toll-like receptors (TLRs) provided a class of membrane receptors that sense extracellular microbes and trigger antipathogen signaling cascades. More recently, intracellular microbial sensors have been identified, including NOD-like receptors (NLRs). Some of the NLRs also sense nonmicrobial danger signals and form large cytoplasmic complexes called inflammasomes that link the sensing of microbial products and metabolic stress to the proteolytic activation of the proinflammatory cytokines IL-1beta and IL-18. The NALP3 inflammasome has been associated with several autoinflammatory conditions including gout. Likewise, the NALP3 inflammasome is a crucial element in the adjuvant effect of aluminum and can direct a humoral adaptive immune response. In this review, we discuss the role of NLRs, and in particular the inflammasomes, in the recognition of microbial and danger components and the role they play in health and disease.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The inflammasome is a proteolytic complex that regulates IL1β and IL-18 secretion in macrophages and dendritic cells. Its plays a vital role in the control of the inflammatory and cellular responses to infectious and danger signals and is an essential part of the innate immune system. Four different inflammasomes have been identified so far, and the NLRP3-inflammasome has been the best-studied in relation to human disease. Activation of the NLRP3-inflammasome by microcrystals, such as monosodium urate (MSU) and basic calcium phosphate (BCP) crystals, leads to IL1β release, which in turn triggers local inflammation. Dysfunction of the NLRP3-inflammasome due to mutations of the NLRP3 gene is the cause of the auto-inflammatory syndrome CAPS. The symptoms and signs of inflammation in both conditions respond to IL1 blockade. IL1 inhibitors have also been used successfully in other idiopathic inflammatory diseases, suggesting that dysregulated inflammasome activity contributes to the pathogenesis of multiple diseases, but the precise underlying mechanisms remain to be identified.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Microcrystals associated with joint diseases, namely monosodium urate, calcium pyrophosphate and basic calcium phosphate, can be considered as 'danger signals' to the innate immune system and provoke inflammation through inflammasome-dependent as well as inflammasome-independent pathways. Direct crystal membrane interactions can also lead to cell activation. The result is the generation of IL-1β and other pro-inflammatory cytokines. The primacy of IL-1β in the case of gouty inflammation has been demonstrated by the efficacy of IL-1 inhibitors in clinical studies. These findings may be relevant to other diseases where crystal formation is found, such as OA and atherosclerosis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Host defense to intracellular pathogens depends upon both innate and adaptive cell-mediated immune responses. Polymorphonuclear neutrophil leukocytes which belong to the innate immune system are the first cells that are recruited massively within hours of microbial infection. Neutrophils are the main players in the killing of microorganisms and recently new methods of killing including nets formation have been described. Neutrophils mediate tissue damage at infected sites. By promoting tissue injury neutrophils contribute to the initiation of inflammation, which is now recognized as an essential step in launching immunity. The importance of neutrophils as decision shaper in the development of an immune response is only emerging as they have long been considered by immunologists as short lived, non-dividing cells, of poor interest. Now, neutrophils are emerging as key components of the inflammatory response, and are shown to have immunoregulatory roles in microbial infections. In addition, neutrophils were also reported to contribute to the recruitment and activation of antigen presenting cells. Thus early interactions between neutrophils and surrounding cells may influence the development/resolution of both inflammatory lesion and pathogen-specific immune response. The impact of neutrophils on cells present at the site of infection are only beginning to be studied and deserves more attention.In this e-book the reader will find updated information about the role of neutrophils in the pathogenesis of 1) bacterial diseases including sepsis, mycobacteria and Chlamydia infections, and of 2) parasitic diseases including leishmaniasis and toxoplasmosis. The role of neutrophils in the protection against microorganisms has largely been underestimated and, until recently, their role was mostly thought to limited to a "kill and die" response. New neutrophil mode of killing, such as their release of extracellular traps to kill extracellular bacterial pathogens, together with several microbial strategies designed to escape NETs are presented in Chapter 1. We will emphasize standard and advanced light microscopy techniques that allowed major advances in the understanding of neutrophil biology, through the visualization of the interaction of selected pathogens with neutrophils in living animals (Chapter 2).The aim of this e-book is to provide an overview of the recent advances made in the field of neutrophil biology. It will provide a basis for understanding future development that will occur in this area, and provide the reader with a short overview of some of the exciting new directions in which neutrophil research is moving.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background. Toll-like receptors (TLR) recognize a variety of ligands, including pathogen-associated molecular patterns and link innate and adaptive immunity. Individual receptors can be up-regulated during infection and inflammation. We examined the expression of selected TLRs at the protein level in various types of renal disease.Methods. Frozen sections of renal biopsies were stained with monoclonal antibodies to TLR-2, -4 and -9.Results. Up-regulation of the three TLRs studied was seen, although the extent was modest. TLR-2- and -4-positive cells belonged to the population of infiltrating inflammatory cells; only in the case of TLR-9 were intrinsic glomerular cells positive in polyoma virus infection and haemolytic uraemic syndrome (HUS).Conclusions. Evidence for the involvement of the three TLRs tested in a variety of human renal diseases was found. These findings add to our understanding of the role of the innate immune system in kidney disease.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Myc activity is emerging as a key element in acquisition and maintenance of stem cell properties. We have previously shown that c-Myc deficiency results in accumulation of defective hematopoietic stem cells (HSCs) due to niche-dependent differentiation defects. Here we report that immature HSCs coexpress c-myc and N-myc mRNA at similar levels. Although conditional deletion of N-myc in the bone marrow does not affect hematopoiesis, combined deficiency of c-Myc and N-Myc (dKO) results in pancytopenia and rapid lethality. Interestingly, proliferation of HSCs depends on both myc genes during homeostasis, but is c-Myc/N-Myc independent during bone marrow repair after injury. Strikingly, while most dKO hematopoietic cells undergo apoptosis, only self-renewing HSCs accumulate the cytotoxic molecule Granzyme B, normally employed by the innate immune system, thereby revealing an unexpected mechanism of stem cell apoptosis. Collectively, Myc activity (c-Myc and N-Myc) controls crucial aspects of HSC function including proliferation, differentiation, and survival.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Summary Multicellular organisms have evolved the immune system to protect from pathogen such as viruses, bacteria, fungi or parasites. Detection of invading pathogens by the host innate immune system is crucial for mounting protective responses and depends on the recognition of microbial components by specific receptors. The results presented in this manuscript focus on the signaling pathways involved in the detection of viral infection by the sensing of viral nucleic acids. First, we describe a new regulatory mechanism controlling RNA-sensing antiviral pathways. Our results indicate that TRIF and Cardif, the crucial adaptor proteins for endosomal and cytoplasmic RNA detection signaling pathway, are processed and inactivated by caspases. The second aspect investigated here involves a signaling pathway triggered upon cytosolic DNA sensing. The interferon inducible protein DAI was recently described as a DNA sensor able to induce the activation of IRFs and NF-κΒ transcription factors leading to type I interferon production. Here we identify two RIP homotypic interaction motifs (RHIMs) in DAI and demonstrate that they mediate the recruitment of RIP1 and RIP3 and the subsequent NF-κΒ activation. Moreover, we observed that the mouse cytomegalovirus RHIM- containing protein M45 has the potential to block this signaling cascade by interfering with the formation of the DAI-RIP1/3 signaling complex. Finally, we report the generation and the initial characterization of NLRX1-deficient mice. NLRX1 is a member of the NOD-like receptor family localized to the mitochondria. The function of NLRX1 is still controversial: one study proposed that NLRX1 acts as an inhibitor of the RIG-like receptor (RLR) antiviral pathway by binding the adaptor protein Cardif, whereas another report implicated NLRX1 in the generation of reactive oxygen species (ROS) and the amplification of NF-κΒ and JNK triggered by TNF-α, poly(I:C) or Shigella infection. Collectively, our results indicate that NLRX1-deficiency does not affect RLR signaling nor TNF-α induced responses. Proteomics analysis identified UQCRC2, a subunit of the complex III of the mitochondrial respiratory chain, as a NLRX1 binding partner. This observation might reveal a possible functional link between NLRX1 and mitochondrial respiration and/or ROS generation. Résumé Au cours de l'évolution, les organismes multicellulaires ont développé le système immunitaire afin de se protéger contre les pathogènes. Une étape cruciale pour le déclenchement des réponses protectrices est la reconnaissance par les cellules du système immunitaire de molécules propres aux microbes grâce à des récepteurs spécifiques. Les résultats présentés dans cette thèse décrivent des nouveaux aspects concernant les voies de signalisation impliquées dans la détection des virus. Le premier projet décrit un mécanisme de régulation des voies activées par la détection d'ARN virale. Nos résultats montrent que TRIF et Cardif, des protéines adaptatrices des voies déclenchées par la reconnaissance de ces acides nucléiques au niveau des endosomes et du cytoplasme, sont clivés et inactivés par les caspases. Le projet suivant de notre recherche concerne une voie de signalisation activée par la détection d'ADN au niveau du cytoplasme. La protéine DAI a été récemment décrite comme un senseur pour cet ADN capable d'activer les facteurs de transcription IRF et NF-κΒ et d'induire ainsi la production des interférons de type I. Ici on démontre que DAI interagit avec RIP1 et RIP3 par le biais de domaines appelés RHIM et que ce complexe est responsable de l'activation de NF-κΒ. On a aussi identifié une protéine du cytomégalovirus de la souris, M45, qui contient ce même domaine et on a pu démontrer qu'elle a la capacité d'interférer avec la formation du complexe entre DAI et RIP1/RIP3 bloquant ainsi l'activation de NF-κΒ. Enfin on décrit ici la génération de souris déficientes pour le gène qui code pour la protéine NLRX1. Cette protéine fait partie de la famille des récepteurs NOD et est localisée dans la mitochondrie. Une étude a suggéré que NLRX1 agit comme un inhibiteur des voies antivirales activées par les récepteurs du type RIG-I (RLR) en interagissant avec la protéine adaptatrice Cardif. Une autre étude propose par contre que NLRX1 participe à la production des dérivés réactifs de l'oxygène et contribue ainsi à augmenter l'activation de NF- κΒ et JNK induite par le TNF-α ou le poly(I:C). Nos résultats montrent que l'absence de NLRX1 ne modifie ni la voie de signalisation RLR ni les réponses induites par le TNF-α. Des analyses ultérieures ont permis d'identifier comme partenaire d'interaction de NLRX1 la protéine UQCRC2, une des sous-unités qui composent le complexe III de la chaîne respiratoire mitochondriale. Cette observation pourrait indiquer un lien fonctionnel entre NLRX1 et la respiration mitochondriale ou la production des dérivés réactifs de l'oxygène au niveau de cette organelle.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

By expressing an array of pattern recognition receptors (PRRs), fibroblasts play an important role in stimulating and modulating the response of the innate immune system. The TLR3 ligand polyriboinosinic acid-polyribocytidylic acid, poly(I:C), a mimic of viral dsRNA, is a vaccine adjuvant candidate to activate professional antigen presenting cells (APCs). However, owing to its ligation with extracellular TLR3 on fibroblasts, subcutaneously administered poly(I:C) bears danger towards autoimmunity. It is thus in the interest of its clinical safety to deliver poly(I:C) in such a way that its activation of professional APCs is as efficacious as possible, whereas its interference with non-immune cells such as fibroblasts is controlled or even avoided. Complementary to our previous work with monocyte-derived dendritic cells (MoDCs), here we sought to control the delivery of poly(I:C) surface-assembled on microspheres to human foreskin fibroblasts (HFFs). Negatively charged polystyrene (PS) microspheres were equipped with a poly(ethylene glycol) (PEG) corona through electrostatically driven coatings with a series of polycationic poly(L-lysine)-graft-poly(ethylene glycol) copolymers, PLL-g-PEG, of varying grafting ratios g from 2.2 up to 22.7. Stable surface assembly of poly(I:C) was achieved by incubation of polymer-coated microspheres with aqueous poly(I:C) solutions. Notably, recognition of both surface-assembled and free poly(I:C) by extracellular TLR3 on HFFs halted their phagocytic activity. Ligation of surface-assembled poly(I:C) with extracellular TLR3 on HFFs could be controlled by tuning the grafting ratio g and thus the chain density of the PEG corona. When assembled on PLL-5.7-PEG-coated microspheres, poly(I:C) was blocked from triggering class I MHC molecule expression on HFFs. Secretion of interleukin (IL)-6 by HFFs after exposure to surface-assembled poly(I:C) was distinctly lower as compared to free poly(I:C). Overall, surface assembly of poly(I:C) may have potential to contribute to the clinical safety of this vaccine adjuvant candidate.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Inflammasomes are cytosolic multiprotein complexes that can proteolytically activate caspase-1. Activated caspase-1 is needed for the maturation and secretion of interleukin (IL)-1beta and IL-18. In the past decade, there has been tremendous progress in our knowledge of inflammasome function and IL-1 signaling, mainly in cells of the innate immune system, such as monocytes, macrophages, neutrophils, and dendritic cells. Because nonimmune cells, including keratinocytes, synovial cells, or astrocytes, can form an interface between the body and the environment or a defined compartment (brain, joint), they are important guardians for the detection of danger signals and the consecutive initiation of an inflammatory response. They are present in anatomical compartments that are less accessible to myeloid cells and thus can fulfill tasks usually performed by residential macrophages. This review focuses on recent progress in our understanding of the processing and functional role of IL-1 in epithelial, mesenchymal, and neuronal cells and in conditions such as tissue repair.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cutaneous leishmaniases have persisted for centuries as chronically disfiguring parasitic infections affecting millions of people across the subtropics. Symptoms range from the more prevalent single, self-healing cutaneous lesion to a persistent, metastatic disease, where ulcerations and granulomatous nodules can affect multiple secondary sites of the skin and delicate facial mucosa, even sometimes diffusing throughout the cutaneous system as a papular rash. The basis for such diverse pathologies is multifactorial, ranging from parasite phylogeny to host immunocompetence and various environmental factors. Although complex, these pathologies often prey on weaknesses in the innate immune system and its pattern recognition receptors. This review explores the observed and potential associations among the multifactorial perpetrators of infectious metastasis and components of the innate immune system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Streptococcus pneumoniae is a leading cause of pneumonia, meningitis, and sepsis. Pneumococci can be divided into >90 serotypes that show differences in the pathogenicity and invasiveness. We tested the hypotheses that the innate immune inflammasome pathway is involved in fighting pneumococcal pneumonia and that some invasive pneumococcal types are not recognized by this pathway. We show that human and murine mononuclear cells responded to S. pneumoniae expressing hemolytic pneumolysin by producing IL-1β. This IL-1β production depended on the NOD-like receptor family, pyrin domain containing 3 (NLRP3) inflammasome. Some serotype 1, serotype 8, and serotype 7F bacteria, which have previously been associated with increased invasiveness and with production of toxins with reduced hemolytic activity, or bacterial mutants lacking pneumolysin did not stimulate notable IL-1β production. We further found that NLRP3 was beneficial for mice during pneumonia caused by pneumococci expressing hemolytic pneumolysin and was involved in cytokine production and maintenance of the pulmonary microvascular barrier. Overall, the inflammasome pathway is protective in pneumonia caused by pneumococci expressing hemolytic toxin but is not activated by clinically important pneumococcal sequence types causing invasive disease. The study indicates that a virulence factor polymorphism may substantially affect the recognition of bacteria by the innate immune system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: It has been proposed that the innate immune system plays a central role in driving the autoimmune T-cell cascade leading to psoriasis; however, there is no direct evidence for this. OBSERVATIONS: We observed aggravation and spreading of a psoriatic plaque when treated topically with the toll-like receptor (TLR) 7 agonist imiquimod. The exacerbation of psoriasis was accompanied by a massive induction of lesional type I interferon activity, detected by MxA expression after imiquimod therapy. Since imiquimod induces large amounts of type I interferon production from TLR7-expressing plasmacytoid dendritic cell precursors (PDCs), the natural interferon-producing cells of the peripheral blood, we asked whether PDCs are present in psoriatic skin. We identified high numbers of PDCs in psoriatic skin lesions (up to 16% of the total dermal infiltrate) based on their coexpression of BDCA2 and CD123. By contrast, PDCs were present at very low levels in atopic dermatitis and not detected in normal human skin. CONCLUSIONS: This study shows that psoriasis can be driven by the innate immune system through TLR ligation. Furthermore, our finding that large numbers of PDCs infiltrate psoriatic skin suggests a role of lesional PDCs as type I interferon-producing targets for the TLR7 agonist imiquimod.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND & AIMS: Clostridium difficile-associated disease (CDAD) is the leading cause of nosocomial diarrhea in the United States. C difficile toxins TcdA and TcdB breach the intestinal barrier and trigger mucosal inflammation and intestinal damage. The inflammasome is an intracellular danger sensor of the innate immune system. In the present study, we hypothesize that TcdA and TcdB trigger inflammasome-dependent interleukin (IL)-1beta production, which contributes to the pathogenesis of CDAD. METHODS: Macrophages exposed to TcdA and TcdB were assessed for IL-1beta production, an indication of inflammasome activation. Macrophages deficient in components of the inflammasome were also assessed. Truncated/mutated forms of TcdB were assessed for their ability to activate the inflammasome. The role of inflammasome signaling in vivo was assessed in ASC-deficient and IL-1 receptor antagonist-treated mice. RESULTS: TcdA and TcdB triggered inflammasome activation and IL-1beta secretion in macrophages and human mucosal biopsy specimens. Deletion of Nlrp3 decreased, whereas deletion of ASC completely abolished, toxin-induced IL-1beta release. TcdB-induced IL-1beta release required recognition of the full-length toxin but not its enzymatic function. In vivo, deletion of ASC significantly reduced toxin-induced inflammation and damage, an effect that was mimicked by pretreatment with the IL-1 receptor antagonist anakinra. CONCLUSIONS: TcdA and TcdB trigger IL-1beta release by activating an ASC-containing inflammasome, a response that contributes to toxin-induced inflammation and damage in vivo. Pretreating mice with the IL-1 receptor antagonist anakinra afforded the same level of protection that was observed in ASC-/- mice. These data suggest that targeting inflammasome or IL-1beta signaling may represent new therapeutic targets in the treatment of CDAD.