978 resultados para Ingå
Resumo:
Layout planning is a process of sizing and placing rooms (e.g. in a house) while a t t empt ing to optimize various criteria. Often the r e are conflicting c r i t e r i a such as construction cost, minimizing the distance between r e l a t ed activities, and meeting the area requirements for these activities. The process of layout planning ha s mostly been done by hand, wi th a handful of a t t empt s to automa t e the process. Thi s thesis explores some of these pa s t a t t empt s and describes several new techniques for automa t ing the layout planning process using evolutionary computation. These techniques a r e inspired by the existing methods, while adding some of the i r own innovations. Additional experimenLs are done to t e s t the possibility of allowing polygonal exteriors wi th rectilinear interior walls. Several multi-objective approaches are used to evaluate and compare fitness. The evolutionary r epr e s ent a t ion and requirements specification used provide great flexibility in problem scope and depth and is worthy of considering in future layout and design a t t empt s . The system outlined in thi s thesis is capable of evolving a variety of floor plans conforming to functional and geometric specifications. Many of the resulting plans look reasonable even when compared to a professional floor plan. Additionally polygonal and multi-floor buildings were also generated.
Resumo:
This project aimed to determine the protein prof i les and concent rat ion in honeys, ef fect of storage condi t ions on the protein content and the interact ion between proteins and polyphenols. Thi r teen honeys f rom di f ferent botanical or igins were analyzed for thei r protein prof i les using SDS-PAGE, protein concent rat ion and phenol ic content , using the Pierce Protein Assay and Fol in-Ciocal teau methods, respectively. Protein-polyphenol interact ions were analyzed by a combinat ion of the ext ract ion of honeys wi th solvents of di f ferent polar i t ies fol lowed by LCjMS analysis of the obtained f ract ions. Results demonst rated a di f ferent protein content in the tested honeys, wi th buckwheat honey possessing the highest protein concent rat ion. We have shown that the reduct ion of proteins dur ing honey storage was caused, partially, by the protein complexat ion wi th phenolics. The LCjMS analysis of the peak elut ing at retent ion t ime of 10 to 14 min demonst rated that these phenolics included f lavonoids such as Pinobanksin, Pinobanksin acetate, Apigenin, Kaemferol and Myricetin and also cinnamic acid.
Resumo:
Chlorhexidine is an effective antiseptic used widely in disinfecting products (hand soap), oral products (mouthwash), and is known to have potential applications in the textile industry. Chlorhexidine has been studied extensively through a biological and biochemical lens, showing evidence that it attacks the semipermeable membrane in bacterial cells. Although extremely lethal to bacterial cells, the present understanding of the exact mode of action of chlorhexidine is incomplete. A biophysical approach has been taken to investigate the potential location of chlorhexidine in the lipid bilayer. Deuterium nuclear magnetic resonance was used to characterize the molecular arrangement of mixed phospholipid/drug formulations. Powder spectra were analyzed using the de-Pake-ing technique, a method capable of extracting both the orientation distribution and the anisotropy distribution functions simultaneously. The results from samples of protonated phospholipids mixed with deuterium-labelled chlorhexidine are compared to those from samples of deuterated phospholipids and protonated chlorhexidine to determine its location in the lipid bilayer. A series of neutron scattering experiments were also conducted to study the biophysical interaction of chlorhexidine with a model phospholipid membrane of DMPC, a common saturated lipid found in bacterial cell membranes. The results found the hexamethylene linker to be located at the depth of the glycerol/phosphate region of the lipid bilayer. As drug concentration was increased in samples, a dramatic decrease in bilayer thickness was observed. Differential scanning calorimetry experiments have revealed a depression of the DMPC bilayer gel-to-lamellar phase transition temperature with an increasing drug concentration. The enthalpy of the transition remained the same for all drug concentrations, indicating a strictly drug/headgroup interaction, thus supporting the proposed location of chlorhexidine. In combination, these results lead to the hypothesis that the drug is folded approximately in half on its hexamethylene linker, with the hydrophobic linker at the depth of the glycerol/phosphate region of the lipid bilayer and the hydrophilic chlorophenyl groups located at the lipid headgroup. This arrangement seems to suggest that the drug molecule acts as a wedge to disrupt the bilayer. In vivo, this should make the cell membrane leaky, which is in agreement with a wide range of bacteriological observations.
Resumo:
Trabajo (Maestro en Ciencias de Ing. Mecánica) U.A.N.L.
Resumo:
Tesis (Maestría en Ciencias en Ing. Mecánica) U.A.N.L. FIME, 1982
Resumo:
Tesis (Ing. Mecánico Administrador) UANL
Resumo:
Tesis (Maestría en Ciencias de Ing. Eléctrica) U.A.N.L.
Resumo:
Tesis (Maestría en Ing. Química) U.A.N.L.
Resumo:
Tesis (Doctor en Ing. Eléctrica) U.A.N.L.
Resumo:
Tesis (Doctor en Ing. con Especialidad en Ingeniería de Sistemas) U.A.N.L.
Resumo:
Tesis (Doctor en Ing. de Materiales) U.A.N.L.
Resumo:
Tesis (Doctor en Ing. de Materiales) U.A.N.L.
Resumo:
Tesis (Doctor en Ing. Mecánica con Especialidad en Materiales) U.A.N.L.
Resumo:
Tesis (Doctor en Ing. Eléctrica) U.A.N.L.
Resumo:
Tesis (Doctor en Ing. Eléctrica) U.A.N.L.