997 resultados para Inert material


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two isomorphous submicron sized metal-organic network compounds, Y-2(PDA)(3)(H2O)1]center dot 2H(2)O (PDA = 1,4-phenylenediacetate), 1 and Y1.8Tb0.2(PDA)(3)(H2O)1]center dot 2H(2)O, Tb@1 have been synthesized by employing solvent assisted liquid grinding followed by heating at 180 degrees C for 1' min and washing with water. Single crystal X-ray data of bulk 1 confirmed a three dimensional porous structure. The structure and morphology of 1 and Tb@1 were systematically characterized by PXRD, TGA, DSC, IR, SEM and EDX analysis. Dehydrated Tb@1 Tb@1'] shows a high intense visible green emission upon exposure to UV light. The green emission of Tb@1' was used for the detection of nitro explosives, such as 2,4,6-trinitrophenol (TNP), 1,3-dinitro benzene (DNB), 2,4-dinitro toluene (DNT), nitro benzene (NB), and 4-nitro toluene (NT) in acetonitrile. The results show that the emission intensity of dehydrated Tb@1' can be quenched by all the nitro analytes used in the present work. Remarkably, Tb@1' exhibited a high efficiency for TNP, DNB and DNT detection with K-SV K-SV = quenching constant based on linear Stern-Volmer plot] values of 70 920, 44 000 and 35 430 M-1, respectively, which are the highest values amongst known metal-organic materials. Using this material submicromolar level (equivalent to 0.18 ppm), a detection of nitro explosives has been achieved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Vernacular dwellings are well-suited climate-responsive designs that adopt local materials and skills to support comfortable indoor environments in response to local climatic conditions. These naturally-ventilated passive dwellings have enabled civilizations to sustain even in extreme climatic conditions. The design and physiological resilience of the inhabitants have coevolved to be attuned to local climatic and environmental conditions. Such adaptations have perplexed modern theories in human thermal-comfort that have evolved in the era of electricity and air-conditioned buildings. Vernacular local building elements like rubble walls and mud roofs are given way to burnt brick walls and reinforced cement concrete tin roofs. Over 60% of Indian population is rural, and implications of such transitions on thermal comfort and energy in buildings are crucial to understand. Types of energy use associated with a buildings life cycle include its embodied energy, operational and maintenance energy, demolition and disposal energy. Embodied Energy (EE) represents total energy consumption for construction of building, i.e., embodied energy of building materials, material transportation energy and building construction energy. Embodied energy of building materials forms major contribution to embodied energy in buildings. Operational energy (OE) in buildings mainly contributed by space conditioning and lighting requirements, depends on the climatic conditions of the region and comfort requirements of the building occupants. Less energy intensive natural materials are used for traditional buildings and the EE of traditional buildings is low. Transition in use of materials causes significant impact on embodied energy of vernacular dwellings. Use of manufactured, energy intensive materials like brick, cement, steel, glass etc. contributes to high embodied energy in these dwellings. This paper studies the increase in EE of the dwelling attributed to change in wall materials. Climatic location significantly influences operational energy in dwellings. Buildings located in regions experiencing extreme climatic conditions would require more operational energy to satisfy the heating and cooling energy demands throughout the year. Traditional buildings adopt passive techniques or non-mechanical methods for space conditioning to overcome the vagaries of extreme climatic variations and hence less operational energy. This study assesses operational energy in traditional dwelling with regard to change in wall material and climatic location. OE in the dwellings has been assessed for hot-dry, warm humid and moderate climatic zones. Choice of thermal comfort models is yet another factor which greatly influences operational energy assessment in buildings. The paper adopts two popular thermal-comfort models, viz., ASHRAE comfort standards and TSI by Sharma and Ali to investigate thermal comfort aspects and impact of these comfort models on OE assessment in traditional dwellings. A naturally ventilated vernacular dwelling in Sugganahalli, a village close to Bangalore (India), set in warm - humid climate is considered for present investigations on impact of transition in building materials, change in climatic location and choice of thermal comfort models on energy in buildings. The study includes a rigorous real time monitoring of the thermal performance of the dwelling. Dynamic simulation models validated by measured data have also been adopted to determine the impact of the transition from vernacular to modern material-configurations. Results of the study and appraisal for appropriate thermal comfort standards for computing operational energy has been presented and discussed in this paper. (c) 2014 K.I. Praseeda. Published by Elsevier Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fractal dimension based damage detection method is investigated for a composite plate with random material properties. Composite material shows spatially varying random material properties because of complex manufacturing processes. Matrix cracks are considered as damage in the composite plate. Such cracks are often seen as the initial damage mechanism in composites under fatigue loading and also occur due to low velocity impact. Static deflection of the cantilevered composite plate with uniform loading is calculated using the finite element method. Damage detection is carried out based on sliding window fractal dimension operator using the static deflection. Two dimensional homogeneous Gaussian random field is generated using Karhunen-Loeve (KL) expansion to represent the spatial variation of composite material property. The robustness of fractal dimension based damage detection method is demonstrated considering the composite material properties as a two dimensional random field.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Here, the effect of micro-structured cathode material on the device performance of indium tin oxide/poly(3hexylethiophene)/copper diode (ITO/P3HT/Cu) is investigated. Two different forms of copper namely bulk metal (Cu{B}) and nanoparticle (Cu{N}) were used as top electrode to probe its effect on device performance. Crystallographic structure and nanoscale morphology of top Cu electrodes were characterized using X-ray diffraction and scanning electronmicroscopy. Electrode formed by evaporation of copper nanoparticle showed enhancement in current density. From capacitance based spectroscopy we observed that density of trap states in ITO/P3HT/copper larger size grain (Cu-LG) are one order greater than that in ITO/P3HT/copper smaller size grain (Cu-SG) device.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present work reports the impact of sintering conditions on the phase stability in hydroxyapatite (HA) magnetite (Fe3O4) bulk composites, which were densified using either pressureless sintering in air or by rapid densification via hot pressing in inert atmosphere. In particular, the phase abundances, structural and magnetic properties of the (1-x)HA-xFe(3)O(4) (x = 5, 10, 20, and 40 wt %) composites were quantified by corroborating results obtained from Rietveld refinement of the X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and Mossbauer spectroscopy. Post heat treatment phase analysis revealed a major retention of Fe3O4 in argon atmosphere, while it was partially/completely oxidized to hematite (alpha-Fe2O3) in air. Mossbauer results suggest the high-temperature diffusion of Fe3+ into hydroxyapatite lattice, leading to the formation of Fe-doped HA. A preferential occupancy of Fe3+ at the Ca(1) and Ca(2) sites under hot-pressing and conventional sintering conditions, respectively, was observed. The lattice expansion in HA from Rietveld analysis correlated well with the amounts of Fe-doped HA determined from the Mossbauer spectra. Furthermore, hydroxyapatite in the monoliths and composites was delineated to exist in the monoclinic (P2(1)/b) structure as against the widely reported hexagonal (P6(3)/m) crystal lattice. The compositional similarity of iron doping in hydroxyapatite to that of tooth enamel and bone presents HA-Fe3O4 composites as potential orthopedic and dental implant materials.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

One new homoleptic Bi(dtc)(3)] (1) (dtc = 4-hydroxypiperdine dithiocarbamate) has been synthesized and characterized by microanalysis, IR, UV-Vis, H-1 and C-13 spectroscopy and X-ray crystallography. The photoluminescence spectrum for the compound in DMSO solution was recorded. The crystal structure of 1 displayed distorted octahedral geometry around the Bi(III) center bonded through sulfur atoms of the dithiocarbamate ligands. TGA indicates that the compound decomposes to a Bi and Bi-S phase system. The Bi and Bi-S obtained from decomposition of the compound have been characterized by pXRD, EDAX and SEM. Solvothermal decomposition of 1 in the absence and presence of two different capping agents yielded three morphologically different Bi2S3 systems which were deployed as counter-electrode in dye-sensitized solar cells (DSSCs). (C) 2015 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Enhancement of localized electric field near metal (plasmonic) nanostructures can have various interesting applications in sensing, imaging, photovoltage generation etc., for which significant efforts are aimed towards developing plasmonic systems with well designed and large electromagnetic response. In this paper, we discuss the wafer scale fabrication and optical characterization of a unique three dimensional plasmonic material. The near field enhancement in the visible range of the electromagnetic spectrum obtained in these structures (order of 106), is close to the fundamental limit that can be obtained in this and similar EM field enhancement schemes. The large near field enhancement has been reflected in a huge Raman signal of graphene layer in close proximity to the plasmonic system, which has been validated with FEM simulations. We have integrated graphene photodetectors with this material to obtain record photovoltage generation, with responsivity as high as A/W. As far as we know, this is the highest sensitivity obtained in any plasmonic-graphene hybrid photodetection system till date.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Porous flower-like alpha-Fe2O3 nanostructures have been synthesized by ethylene glycol mediated iron alkoxide as an intermediate and studied as an anode material of Li-ion battery. The iron alkoxide precursor is heated at different temperatures from 300 to 700 degrees C. The alpha-Fe2O3 samples possess porosity and high surface area. There is a decrease in pore volume as well as surface area by increasing the preparation temperature. The reversible cycling properties of the alpha-Fe2O3 nanostructures have been evaluated by cyclic voltammetry, galvanostatic charge discharge cycling, and galvanostatic intermittent titration measurements at ambient temperature. The initial discharge capacity values of 1063, 1168,1183, 1152 and 968 mAh g(-1) at a specific current of 50 mA g(-1) are obtained for the samples prepared at 300, 400, 500, 600 and 700 degrees C, respectively. The samples prepared at 500 and 600 degrees C exhibit good cycling performance with high rate capability. The high rate capacity is attributed to porous nature of the materials. As the iron oxides are inexpensive and environmental friendly, the alpha-Fe2O3 has potential application as anode material for rechargeable Li batteries. (C) 2015 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electromigration, mostly known for its damaging effects in microelectronic devices, is basically a material transport phenomenon driven by the electric field and kinetically controlled by diffusion. In this work, we show how controlled electromigration can be used to create scientifically interesting and technologically useful micro-/nano-scale patterns, which are otherwise extremely difficult to fabricate using conventional cleanroom practices, and present a few examples of such patterns. In a solid thin-film structure, electromigration is used to generate pores at preset locations for enhancing the sensitivity of a MEMS sensor. In addition to electromigration in solids, the flow instability associated with the electromigration-induced long-range flow of liquid metals is shown to form numerous structures with high surface area to volume ratio. In very thin solid films on non-conductive substrates, solidification of flow-affected region results in the formation of several features, such as nano-/micro-sized discrete metallic beads, 3D structures consisting of nano-stepped stairs, etc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have developed a unique single-step chemical vapor deposition (CVD) route for the synthesis of composite thin films containing carbon nanotubes (CNTs). CVD was carried out in an inert ambient using only iron(III) acetylacetonate as the precursor. Depositions were conducted at 700 degrees C on stainless steel substrates in argon ambient in the absence of any reactive gases (such as oxygen, hydrogen). By changing the deposition parameters, especially the pressure in the CVD reactor, the form of carbon deposited could be changed from amorphous to carbon nanotubes, the latter resulting in Fe-Fe3O4-CNT films. X-ray diffraction, Raman spectroscopy, X-ray photoelectron spectroscopy, and electron microscopy together confirm the formation of the three-component composite and illustrate the nanoscale mixing of the components. Elemental iron formed in this process was protected from oxidation by the co-deposited carbon surrounding it. Irrespective of the substrate used, a composite coating with CNTs was formed under optimum conditions, as verified by analyses of the film formed on polycrystalline alumina and silicon substrates.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In conventional Raman spectroscopic measurements of liquids or surfaces the preferred geometry for detection of the Raman signal is the backscattering (or reflection) mode. For non-transparent layered materials, sub-surface Raman signals have been retrieved using spatially offset Raman spectroscopy (SORS), usually with light collection in the same plane as the point of excitation. However, as a result of multiple scattering in a turbid medium, Raman photons will be emitted in all directions. In this study, Monte Carlo simulations for a three-dimensional layered sample with finite geometry have been performed to confirm the detectability of Raman signals at all angles and at all sides of the object. We considered a non-transparent cuboid container (high density polyethylene) with explosive material (ammonium nitrate) inside. The simulation results were validated with experimental Raman intensities. Monte Carlo simulation results reveal that the ratio of sub-surface to surface signals improves at geometries other than backscattering. In addition, we demonstrate through simulations the effects of the absorption and scattering coefficients of the layers, and that of the diameter of the excitation beam. The advantage of collecting light from all possible 4 angles, over other collection modes, is that this technique is not geometry specific and molecular identification of layers underneath non-transparent surfaces can be obtained with minimal interference from the surface layer. To what extent all sides of the object will contribute to the total signal will depend on the absorption and scattering coefficients and the physical dimensions. Copyright (c) 2015 John Wiley & Sons, Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Methane, the primary constituent of natural gas, binds too weakly to nanostructured carbons to meet the targets set for on-board vehicular storage to be viable. We show, using density functional theory calculations, that replacing graphene by graphene oxide increases the adsorption energy of methane by 50%. This enhancement is sufficient to achieve the optimal binding strength. In order to gain insight into the sources of this increased binding, that could also be used to formulate design principles for novel storage materials, we consider a sequence of model systems that progressively take us from graphene to graphene oxide. A careful analysis of the various contributions to the weak binding between the methane molecule and the graphene oxide shows that the enhancement has important contributions from London dispersion interactions as well as electrostatic interactions such as Debye interactions, aided by geometric curvature induced primarily by the presence of epoxy groups. (C) 2015 AIP Publishing LLC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two species of Pleurotus, Pleurotus florida and Pleurotus flabellatus were cultivated on two agro-residues (paddy straw; PS and coir pith; CP) singly as well as in combination with biogas digester residue (BDR, main feed leaf biomass). The biological efficiency, nutritional value, composition and nutrient balance (C, N and P) achieved with these substrates were studied. The most suitable substrate that produced higher yields and biological efficiency was PS mixed with BDR followed by coir pith with BDR. Addition of BDR with agro-residues could increase mushroom yield by 20-30%. The biological efficiency achieved was high for PS + BDR (231.93% for P. florida and 209.92% for P. flabellatus) and for CP + BDR (14831% for P. florida and 188.46% for P. flabellatus). The OC (organic carbon), TKN (nitrogen) and TP (phosphate) removal of the Pleurotus spp. under investigation suggests that PS with BDR is the best substrate for growing mushroom. (C) 2015 Published by Elsevier Inc. on behalf of International Energy Initiative.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lithium sodium titanate insertion-type anode has been synthesized by classical solid-state (dry) and an alternate solution-assisted (wet) sonochemical synthesis routes. Successful synthesis of the target compound has been realized using simple Na- and Li-hydroxide salts along with titania. In contrast to the previous reports, these energy-savvy synthesis routes can yield the final product by calcination at 650 -750 degrees C for limited duration of 1-10 h. Owing to the restricted calcination duration (dry route for 1-2 h and wet route for 1-5 h), they yield homogeneous nanoscale lithium sodium titanate particles. Sono-chemical synthesis reduces the lithium sodium titanate particle size down to 80-100 nm vis-a-vis solid-state method delivering larger (200-500 nm) particles. Independent of the synthetic methods, the end products deliver reversible electrochemical performance with reversible capacity exceeding 80 mAh.g(-1) acting as a 1.3 V anode for Li-ion batteries. (C) 2015 Elsevier B.V. All rights reserved.