997 resultados para Inelastic electron scattering


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The gamma-rays produced by the inelastic scattering of 14 MeV neutrons. in fusion reactor materials have been studied using a gamma-ray spectrometer employing a sodium iodide scintillation detector. The source neutrons are produced by the T(d,n)4He reaction using the SAMES accelerator at the University of Aston in Birmingham. In order to eliminate the large gamma-ray background and neutron signal due to the sensitivity of the sodium iodide detector to neutrons, the gamma-ray detector is heavily shielded and is used together with a particle time of flight discrimination system based on the associated particle time of flight method. The instant of production of a source neutron is determined by detecting the associated alpha-particle enabling discrimination between the neutrons and gamma-rays by their different time of flight times. The electronic system used for measuring the time of flight of the neutrons and gamrna-rays over the fixed flight path is described. The materials studied in this work were Lithium and Lead because of their importance as fuel breeding and shielding materials in conceptual fusion reactor designs. Several sample thicknesses were studied to determine the multiple scattering effects. The observed gamma-ray spectra from each sample at several scattering angles in the angular range Oº - 90° enabled absolute differential gamma-ray production cross-sections and angular distributions of the resolved gamma-rays from Lithium to be measured and compared with published data. For the Lead sample, the absolute differential gamma-ray production cross-sections for discrete 1 MeV ranges and the angular distributions were measured. The measured angular distributions of the present work and those on Iron from previous work are compared to the predictions of the Monte Carlo programme M.O.R.S.E. Good agreement was obtained between the experimental results and the theoretical predictions. In addition an empirical relation has been constructed which describes the multiple scattering effects by a single parameter and is capable of predicting the gamma-ray production cross-sections for the materials to an accuracy of ± 25%.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A high resolution study of the quasielastic 2 H(e, e'p)n reaction was performed in Hall A at the Thomas Jefferson Accelerator Facility in Newport News, Virginia. The measurements were performed at a central momentum transfer of : q: ∼ 2400 MeV/c, and at a central energy transfer of ω ∼ 1500 MeV, a four momentum transfer Q2 = 3.5 (GeV/c)2, covering missing momenta from 0 to 0.5 GeV/c. The majority of the measurements were performed at Φ = 180° and a small set of measurements were done at Φ = 0°. The Hall A High Resolution Spectrometers (HRS) were used to detect coincident electrons and protons, respectively. Absolute 2H(e, e'p) n cross sections were obtained as a function of the recoiling neutron scattering angle with respect to [special characters omitted]. The experimental results were compared to a Plane Wave Impulse Approximation (PWIA) model and to a calculation that includes Final State Interaction (FSI) effects. Experimental 2H(e, e'p)n cross sections were determined with an estimated systematic uncertainty of 7%. The general features of the measured cross sections are reproduced by Glauber based calculations that take the motion of the bound nucleons into account (GEA). Final State Interactions (FSI) contributions were found to depend strongly on the angle of the recoiling neutron with respect to the momentum transfer and on the missing momentum. We found a systematic deviation of the theoretical prediction of about 30%. At small &thetas; nq (&thetas;nq < 60°) the theory overpredicts the cross section while at large &thetas; nq (&thetas;nq > 80°) the theory underestimates the cross sections. We observed an enhancement of the cross section, due to FSI, of about 240%, as compared to PWIA, for a missing momentum of 0.4 GeV/c at an angle of 75°. For missing momentum of 0.5 GeV/c the enhancement of the cross section due to the same FSI effects, was about 270%. This is in agreement with GEA. Standard Glauber calculations predict this large contribution to occur at an angle of 90°. Our results show that GEA better describes the 2H(e, e'p)n reaction.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

First-principles electronic structure methods are used to find the rates of intravalley and intervalley n-type carrier scattering due to alloy disorder in Si1-xGex alloys. The required alloy scattering matrix elements are calculated from the energy splitting of nearly degenerate Bloch states which arises when one average host atom is replaced by a Ge or Si atom in supercells containing up to 128 atoms. Scattering parameters for all relevant Delta and L intravalley and intervalley alloy scattering are calculated. Atomic relaxation is found to have a substantial effect on the scattering parameters. f-type intervalley scattering between Delta valleys is found to be comparable to other scattering channels. The n-type carrier mobility, calculated from the scattering rate using the Boltzmann transport equation in the relaxation time approximation, is in excellent agreement with experiments on bulk, unstrained alloys.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Duke Free-electron laser (FEL) system, driven by the Duke electron storage ring, has been at the forefront of developing new light source capabilities over the past two decades. In 1999, the Duke FEL demonstrated the first lasing of a storage ring FEL in the vacuum ultraviolet (VUV) region at $194$ nm using two planar OK-4 undulators. With two helical undulators added to the outboard sides of the planar undulators, in 2005 the highest FEL gain ($47.8\%$) of a storage ring FEL was achieved using the Duke FEL system with a four-undulator configuration. In addition, the Duke FEL has been used as the photon source to drive the High Intensity $\gamma$-ray Source (HIGS) via Compton scattering of the FEL beam and electron beam inside the FEL cavity. Taking advantage of FEL's wavelength tunability as well as the adjustability of the energy of the electron beam in the storage ring, the nearly monochromatic $\gamma$-ray beam has been produced in a wide energy range from $1$ to $100$ MeV at the HIGS. To further push the FEL short wavelength limit and enhance the FEL gain in the VUV regime for high energy $\gamma$-ray production, two additional helical undulators were installed in 2012 using an undulator switchyard system to allow switching between the two planar and two helical undulators in the middle section of the FEL system. Using different undulator configurations made possible by the switchyard, a number of novel capabilities of the storage ring FEL have been developed and exploited for a wide FEL wavelength range from infrared (IR) to VUV. These new capabilities will eventually be made available to the $\gamma$-ray operation, which will greatly enhance the $\gamma$-ray user research program, creating new opportunities for certain types of nuclear physics research.

With the wide wavelength tuning range, the FEL is an intrinsically well-suited device to produce lasing with multiple colors. Taking advantage of the availability of an undulator system with multiple undulators, we have demonstrated the first two-color lasing of a storage ring FEL. Using either a three- or four-undulator configuration with a pair of dual-band high reflectivity mirrors, we have achieved simultaneous lasing in the IR and UV spectral regions. With the low-gain feature of the storage ring FEL, the power generated at the two wavelengths can be equally built up and precisely balanced to reach FEL saturation. A systematic experimental program to characterize this two-color FEL has been carried out, including precise power control, a study of the power stability of two-color lasing, wavelength tuning, and the impact of the FEL mirror degradation. Using this two-color laser, we have started to develop a new two-color $\gamma$-ray beam for scientific research at the HIGS.

Using the undulator switchyard, four helical undulators installed in the beamline can be configured to not only enhance the FEL gain in the VUV regime, but also allow for the full polarization control of the FEL beams. For the accelerator operation, the use of helical undulators is essential to extend the FEL mirror lifetime by reducing radiation damage from harmonic undulator radiation. Using a pair of helical undulators with opposite helicities, we have realized (1) fast helicity switching between left- and right-circular polarizations, and (2) the generation of fully controllable linear polarization. In order to extend these new capabilities of polarization control to the $\gamma$-ray operation in a wide energy range at the HIGS, a set of FEL polarization diagnostic systems need to be developed to cover the entire FEL wavelength range. The preliminary development of the polarization diagnostics for the wavelength range from IR to UV has been carried out.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To characterize non-thermal atmospheric pressure plasmas experimentally, a large variety of methods and techniques is available, each having its own specific possibilities and limitations. A rewarding method to investigate these plasma sources is laser Thomson scattering. However, that is challenging. Non-thermal atmospheric pressure plasmas (gas temperatures close to room temperature and electron temperatures of a few eV) have usually small dimensions (below 1 mm) and a low degree of ionization (below 10-4). Here an overview is presented of how Thomson scattering can be applied to such plasmas and used to measure directly spatially and temporally resolved the electron density and energy distribution. A general description of the scattering of photons and the guidelines for an experimental setup of this active diagnostic are provided. Special attention is given to the design concepts required to achieve the maximum signal photon flux with a minimum of unwanted signals. Recent results from the literature are also presented and discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this thesis, the magnetic properties of four transition-metal oxides are presented. Their multiferroic and magnetoelectric phases have been investigated by means of different neutron scattering techniques. The materials TbMnO3 and MnWO4 belong to the group of spin-induced multiferroics. Their ferroelectric polarization can be explained by the inverse DzyaloshinskiiMoriya interaction. Another common feature of both materials is the presence of subsequent magnetic transitions from a spin-density wave to a spin spiral. The features of the phase transitions have been studied in both materials and it could be shown that diffuse magnetic scattering from the spin spiral is present even in the ordered spin-density wave phase. The excitation spectrum in the multiferroic phase of TbMnO3 was investigated in detail and a comprehensive dataset was obtained using time-of-flight spectroscopy. A spin-wave model could be obtained which can quantitatively describe the full dispersion. Furthermore, the polarization of the zone-center excitations could be derived which fit well to data from inelastic neutron spectroscopy and infrared spectroscopy. With the combination of spherical neutron polarimetry and a poling of the sample by an electric field, it was possible to observe the chiral magnetic component of the magnetic excitations in TbMnO3 and MnWO4. The spin-wave model for TbMnO3 obtained in this thesis is able to correctly describe the dispersion of this component. The double tungstate NaFe(WO4)2 is isostructural to the multiferroic MnWO4 and develops a complex magnetic phase diagram. By the use of neutron diffraction techniques, the zero-field structure and high-field structures in magnetic field applied along the b-axis could be determined. The data reveal a direct transition into an incommensurate spin-spiral structure. The value of the incommensurability is driven by anharmonic modulations and shows strong hysteresis effects. The static and dynamic properties in the magnetoelectric spin-glass phase of Ni0.42Mn0.58TiO3 were studied in detail. The spin-glass phase is composed of short-ranged MnTiO3 and NiTiO3-type order. The antiferromagnetic domains could be controlled by crossed magnetic and electric fields, which was visualized using spherical neutron polarimetry. A comprehensive dataset of the magnetic excitations in the spin-glass phase was collected. The dataset revealed correlations in the hexagonal plane which are only weakly coupled along the c-axis. The excitation spectra could be simulated by taking into account the MnTiO3-type order.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The subject of quark transverse spin and transverse momentum distribution are two current research frontier in understanding the spin structure of the nucleons. The goal of the research reported in this dissertation is to extract new information on the quark transversity distribution and the novel transverse-momentum-dependent Sivers function in the neutron. A semi-inclusive deep inelastic scattering experiment was performed at the Hall A of the Jefferson laboratory using 5.9 GeV electron beam and a transversely polarized ^{3}He target. The scattered electrons and the produced hadrons (pions, kaons, and protons) were detected in coincidence with two large magnetic spectrometers. By regularly flipping the spin direction of the transversely polarized target, the single-spin-asymmetry (SSA) of the semi-inclusive deep inelastic reaction ^{3}He^{uparrow}(e,e'h^{\pm})X was measured over the kinematic range 0.13 < x < 0.41 and 1.3 < Q^{2} < 3.1 (GeV)^{2}. The SSA contains several different azimuthal angular modulations which are convolutions of quarks distribution functions in the nucleons and the quark fragmentation functions into hadrons. It is from the extraction of the various ``moments'' of these azimuthal angular distributions (Collins moment and Sivers moment) that we obtain information on the quark transversity distribution and the novel T-odd Sivers function. In this dissertation, I first introduced the theoretical background and experimental status of nucleon spins and the physics of SSA. I will then present the experimental setup and data collection of the JLab E06-010 experiment. Details of data analysis will be discussed next with emphasis on the kaon particle identification and the Ring-Imaging Cherenkov detector which are my major responsibilities in this experiment. Finally, results on the kaon Collins and Sivers moments extracted from the Maximum Likelihood method will be presented and interpreted. I will conclude with a discussion on the future prospects for this research.

Relevância:

30.00% 30.00%

Publicador:

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work, we report theoretical and experimental cross sections for elastic scattering of electrons by chlorobenzene (ClB). The theoretical integral and differential cross sections (DCSs) were obtained with the Schwinger multichannel method implemented with pseudopotentials (SMCPP) and the independent atom method with screening corrected additivity rule (IAM-SCAR). The calculations with the SMCPP method were done in the static-exchange (SE) approximation, for energies above 12 eV, and in the static-exchange plus polarization approximation, for energies up to 12 eV. The calculations with the IAM-SCAR method covered energies up to 500 eV. The experimental differential cross sections were obtained in the high resolution electron energy loss spectrometer VG-SEELS 400, in Lisbon, for electron energies from 8.0 eV to 50 eV and angular range from 7 degrees to 110 degrees. From the present theoretical integral cross section (ICS) we discuss the low-energy shape-resonances present in chlorobenzene and compare our computed resonance spectra with available electron transmission spectroscopy data present in the literature. Since there is no other work in the literature reporting differential cross sections for this molecule, we compare our theoretical and experimental DCSs with experimental data available for the parent molecule benzene. Published by AIP Publishing.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Graphene and carbon nanotube nanocomposite (GCN) was synthesised and applied in gene transfection of pIRES plasmid conjugated with green fluorescent protein (GFP) in NIH-3T3 and NG97 cell lines. The tips of the multi-walled carbon nanotubes (MWCNTs) were exfoliated by oxygen plasma etching, which is also known to attach oxygen content groups on the MWCNT surfaces, changing their hydrophobicity. The nanocomposite was characterised by high resolution scanning electron microscopy; energy-dispersive X-ray, Fourier transform infrared and Raman spectroscopies, as well as zeta potential and particle size analyses using dynamic light scattering. BET adsorption isotherms showed the GCN to have an effective surface area of 38.5m(2)/g. The GCN and pIRES plasmid conjugated with the GFP gene, forming π-stacking when dispersed in water by magnetic stirring, resulting in a helical wrap. The measured zeta potential confirmed that the plasmid was connected to the nanocomposite. The NIH-3T3 and NG97 cell lines could phagocytize this wrap. The gene transfection was characterised by fluorescent protein produced in the cells and pictured by fluorescent microscopy. Before application, we studied GCN cell viability in NIH-3T3 and NG97 line cells using both MTT and Neutral Red uptake assays. Our results suggest that GCN has moderate stability behaviour as colloid solution and has great potential as a gene carrier agent in non-viral based therapy, with low cytotoxicity and good transfection efficiency.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this study was to evaluate the effectiveness of 17% ethylene-diamine-tetra-acetic acid (EDTA) used alone or associated with 2% chlorhexidine gel (CHX) on intracanal medications (ICM) removal. Sixty single-rooted human teeth with fully formed apex were selected. The cervical and middle thirds of each canal were prepared with Gates Glidden drills and rotary files. The apical third was shaped with hand files. The specimens were randomly divided into two groups depending on the ICM used after instrumentation: calcium hydroxide Ca(OH)(2) +CHX or Ca(OH)(2) +sterile saline (SS). After seven days, each group was divided into subgroups according to the protocol used for ICM removal: instrumentation and irrigation either with EDTA, CHX+EDTA, or SS (control groups). All specimens were sectioned and processed for observation of the apical thirds by using scanning electron microscopy. Two calibrated evaluators attributed scores to each specimen. The differences between the protocols for ICM removal were analyzed with Kruskal-Wallis and Mann-Whitney U tests. Friedman and Wilcoxon signed rank tests were used for comparison between the score of debris obtained in each root canal third. Remains of Ca(OH)(2) were found in all specimens independently of the protocol and ICM used (P > 0.05). Seventeen percent EDTA showed the best results in removing ICM when used alone (P < 0.05), particularly in those associated with CHX. It was concluded that the chelating agent 17% EDTA significantly improved the removal of ICM when used alone. Furthermore, the type of the vehicle associated with Ca(OH)(2) also plays a role in the ICM removal.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report measurements of single- and double-spin asymmetries for W^{±} and Z/γ^{*} boson production in longitudinally polarized p+p collisions at sqrt[s]=510  GeV by the STAR experiment at RHIC. The asymmetries for W^{±} were measured as a function of the decay lepton pseudorapidity, which provides a theoretically clean probe of the proton's polarized quark distributions at the scale of the W mass. The results are compared to theoretical predictions, constrained by polarized deep inelastic scattering measurements, and show a preference for a sizable, positive up antiquark polarization in the range 0.05

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Current data indicate that the size of high-density lipoprotein (HDL) may be considered an important marker for cardiovascular disease risk. We established reference values of mean HDL size and volume in an asymptomatic representative Brazilian population sample (n=590) and their associations with metabolic parameters by gender. Size and volume were determined in HDL isolated from plasma by polyethyleneglycol precipitation of apoB-containing lipoproteins and measured using the dynamic light scattering (DLS) technique. Although the gender and age distributions agreed with other studies, the mean HDL size reference value was slightly lower than in some other populations. Both HDL size and volume were influenced by gender and varied according to age. HDL size was associated with age and HDL-C (total population); non- white ethnicity and CETP inversely (females); HDL-C and PLTP mass (males). On the other hand, HDL volume was determined only by HDL-C (total population and in both genders) and by PLTP mass (males). The reference values for mean HDL size and volume using the DLS technique were established in an asymptomatic and representative Brazilian population sample, as well as their related metabolic factors. HDL-C was a major determinant of HDL size and volume, which were differently modulated in females and in males.