892 resultados para Indian allotments


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The high level of public accountability attached to Public Sector Enterprises as a result of public ownership makes them socially responsible. The Committee of Public Undertakings in 1992 examined the issue relating to social obligations of Central Public Sector Enterprises and observed that ``being part of the `State', every Public Sector enterprise has a moral responsibility to play an active role in discharging the social obligations endowed on a welfare state, subject to the financial health of the enterprise''. It issued the Corporate Social Responsibility Guidelines in 2010 where all Central Public Enterprises, through a Board Resolution, are mandated to create a CSR budget as a specified percentage of net profit of the previous year. This paper examines the CSR activities of the biggest engineering public sector organization in India, Bharath Heavy Electricals Limited. The objectives are twofold, one, to develop a case study of the organization about the funds allocated and utilized for various CSR activities, and two, to examine its status with regard to other organizations, the 2010 guidelines, and the local socio-economic development. Secondary data analysis results show three interesting trends. One, it reveals increasing organizational social orientation with the formal guidelines in place. Two, Firms can no longer continue to exploit environmental resources and escape from their responsibilities by acting separate entities regardless of the interest of the society and Three the thrust of CSR in public sector is on inclusive growth, sustainable development and capacity building with due attention to the socio-economic needs of the neglected and marginalized sections of the society.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose: Congenital hereditary endothelial dystrophy 2 (CHED2) is an autosomal recessive disorder caused by mutations in the solute carrier family 4, sodium borate transporter, member 11 (SLC4A11) gene. The purpose of this study was to identify the genetic cause of CHED2 in six Indian families and catalog all known mutations in the SLC4A11 gene. Methods: Peripheral blood samples were collected from individuals of the families with CHED2 and used in genomic DNA isolation. PCR primers were used to amplify the entire coding region including intron-exon junctions of SLC4A11. Amplicons were subsequently sequenced to identify the mutations. Results: DNA sequence analysis of the six families identified four novel (viz., p.Thr262Ile, p.Gly417Arg, p.Cys611Arg, and p.His724Asp) mutations and one known p.Arg869His homozygous mutation in the SLC4A11 gene. The mutation p.Gly417Arg was identified in two families. Conclusions: This study increases the mutation spectrum of the SLC4A11 gene. A review of the literature showed that the total number of mutations in the SLC4A11 gene described to date is 78. Most of the mutations are missense, followed by insertions-deletions. The present study will be helpful in genetic diagnosis of the families reported here.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Stable isotopes from a U/Th dated aragonite stalagmite from the Central Kumaun Himalaya provide evidence of variation in climatic conditions in the last similar to 1800 years. The delta O-18 and delta C-13 values vary from -4.3 parts per thousand to -7.6 parts per thousand and -3.4 parts per thousand to -9.1 parts per thousand respectively, although the stalagmite was not grown in isotopic equilibrium with cave drip water, a clear palaeoclimatic signal in stalagmite delta O-18 values is evident based on the regional climate data. The stalagmite showed a rapid growth rate during 830-910 AD, most likely the lower part of Medieval Warm Period (MWP), and 1600-1640 AD, the middle part of Little Ice Age (LIA). Two distinct phases of reduced precipitation are marked by a 2 parts per thousand shift in 8180 values towards the end of MWP (similar to 1080-1160 AD) and after its termination from similar to 1210 to 1440 AD. The LIA (similar to 1440-1880 AD) is represented by sub-tropical climate similar to modern conditions, whereas the post-LIA was comparatively drier. The Inter Tropical Convergence Zone (ITCZ) was located over the cave location during wetter/warmer conditions. When it shifted southward, precipitation over the study area decreased. A prominent drop in delta O-18 and delta C-13 values during the post-LIA period may also have been additionally influenced by anthropogenic activity in the area. (C) 2013 Elsevier Ltd and INQUA. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is now well known that there is a strong association of the extremes of the Indian summer monsoon rainfall (ISMR) with the El Nio and southern oscillation (ENSO) and the Equatorial Indian Ocean Oscillation (EQUINOO), later being an east-west oscillation in convection anomaly over the equatorial Indian Ocean. So far, the index used for EQUINOO is EQWIN, which is based on the surface zonal wind over the central equatorial Indian Ocean. Since the most important attribute of EQUINOO is the oscillation in convection/precipitation, we believe that the indices based on convection or precipitation would be more appropriate. Continuous and reliable data on outgoing longwave radiation (OLR), and satellite derived precipitation are now available from 1979 onwards. Hence, in this paper, we introduce new indices for EQUINOO, based on the difference in the anomaly of OLR/precipitation between eastern and western parts of the equatorial Indian Ocean. We show that the strong association of extremes of the Indian summer monsoon with ENSO and EQUINOO is also seen when the new indices are used to represent EQUINOO.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The simulation of precipitation in a general circulation model relying on relaxed mass flux cumulus parameterization scheme is sensitive to cloud adjustment time scale (CATS). In this study, the frequency of the dominant intra-seasonal mode and interannual variability of Indian summer monsoon rainfall (ISMR) simulated by an atmospheric general circulation model is shown to be sensitive to the CATS. It has been shown that a longer CATS of about 5 h simulates the spatial distribution of the ISMR better. El Nio Southern Oscillation-ISMR relationship is also sensitive to CATS. The equatorial Indian Ocean rainfall and ISMR coupling is sensitive to CATS. Our study suggests that a careful choice of CATS is necessary for adequate simulation of spatial pattern as well as interannual variation of Indian summer monsoon precipitation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is particularly appropriate that the Journal of the Indian Institute of Science is bringing out a commemorative issue to mark the International Year of Crystallography 2014 (IYCr2014). India has had a strong crystallographic tradition, and the earliest work in what may be described as structural crystallography from this country is the work of K. Banerjee on the determination of the crystal structure of naphthalene in 1930. The Indian Institute of Science itself has played no small part in establishing and sustaining the subject of crystallography in this country. A large number of papers in this special issue are written by authors who have either have been trained in the Institute or who have some kind of professional association with this organization. In this article I will try to capture some unique features that characterize the intersection of the crystallographic and the chemical domains, mostly as they pertain to the Indian contribution to this subject. Crystallography is of course is as old as chemistry itself, and some would say it is even older. The relationships between chemistry and crystallography go back to much before the discovery of diffraction of X-rays by crystals.The discovery of polymorphism by Mitscherlisch in 1822, Haüy’s formulation of the molecule integrante, and the work of Fedorov and Groth on the identification of crystals from their morphology alone, are well known examples of such relationships.A very early article by Tutton speaks of “crystallo-chemical analysis”. In this article, I shall, however, be dealing with the interplay of chemistry and crystallography only in the post diffraction era, that is, after 1912. Much had been written and said about chemical crystallography, and even within the context of the present special issue, there is a review of chemical crystallography in India including some futuristic trends. This topic was also reviewed by Nangia in a special publication brought out by Indian Academy of Sciences in 2009,and by Desiraju in a special publication brought out by the Indian National Science Academy in 2010. A rather detailed account of crystallography in India appeared in 2007 in the newsletter of the International Union of Crystallography (IUCr) in which chemical crystallography was detailed. Since all these publications are fairly recent there is little need for me to attempt a comprehensive coverage of chemical crystallography in India in this short review

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Global efforts in macromolecular crystallography started in the thirties of the last century. However, definitive results began to emerge only in the late fifties and the early sixties. India has a long tradition in crystallography. The country had a head start in theoretical and computational structural biology, thanks to the efforts of G.N. Ramachandran and his colleagues in the fifties and the sixties. However, macromolecular crystallography got off the ground in India only in the eighties, particularly after the Bangalore group received adequate support from the Department of Science and Technology under their Thrust Area Programme. The Bangalore centre was also identified as a national nucleus for the development of the area in the country. Since then work in the area has spread widely and is being carried out by several groups, mainly led by scientists trained at Bangalore or their descendents, in about thirty institutions in India. In addition to the Department of Science and Technology, the effort is now supported by other agencies like the Department of Biotechnology and the Council of Scientific and Industrial Research. The problems addressed by macromolecular crystallographers in India encompass almost all aspects of modern biology. Indian efforts in macromolecular crystallography have also become an important component of the international efforts in the area.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sacred groves are patches of forests preserved for their spiritual and religious significance. The practice gained relevance with the spread of agriculture that caused large-scale deforestation affecting biodiversity and watersheds. Sacred groves may lose their prominence nowadays, but are still relevant in Indian rural landscapes inhabited by traditional communities. The recent rise of interest in this tradition encouraged scientific study that despite its pan-Indian distribution, focused on India's northeast, Western Ghats and east coast either for their global/regional importance or unique ecosystems. Most studies focused on flora, mainly angiosperms, and the faunal studies concentrated on vertebrates while lower life forms were grossly neglected. Studies on ecosystem functioning are few although observations are available. Most studies attributed watershed protection values to sacred groves but hardly highlighted hydrological process or water yield in comparison with other land use types. The grove studies require diversification from a stereotyped path and must move towards creating credible scientific foundations for conservation. Documentation should continue in unexplored areas but more work is needed on basic ecological functions and ecosystem dynamics to strengthen planning for scientifically sound sacred grove management.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The first regional synthesis of long-term (back to similar to 25 years at some stations) primary data (from direct measurement) on aerosol optical depth from the ARFINET (network of aerosol observatories established under the Aerosol Radiative Forcing over India (ARFI) project of Indian Space Research Organization over Indian subcontinent) have revealed a statistically significant increasing trend with a significant seasonal variability. Examining the current values of turbidity coefficients with those reported similar to 50 years ago reveals the phenomenal nature of the increase in aerosol loading. Seasonally, the rate of increase is consistently high during the dry months (December to March) over the entire region whereas the trends are rather inconsistent and weak during the premonsoon (April to May) and summer monsoon period (June to September). The trends in the spectral variation of aerosol optical depth (AOD) reveal the significance of anthropogenic activities on the increasing trend in AOD. Examining these with climate variables such as seasonal and regional rainfall, it is seen that the dry season depicts a decreasing trend in the total number of rainy days over the Indian region. The insignificant trend in AOD observed over the Indo-Gangetic Plain, a regional hot spot of aerosols, during the premonsoon and summer monsoon season is mainly attributed to the competing effects of dust transport and wet removal of aerosols by the monsoon rain. Contributions of different aerosol chemical species to the total dust, simulated using Goddard Chemistry Aerosol Radiation and Transport model over the ARFINET stations, showed an increasing trend for all the anthropogenic components and a decreasing trend for dust, consistent with the inference deduced from trend in Angstrom exponent.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have developed a one-way nested Indian Ocean regional model. The model combines the National Oceanic and Atmospheric Administration (NOAA) Geophysical Fluid Dynamics Laboratory's (GFDL) Modular Ocean Model (MOM4p1) at global climate model resolution (nominally one degree), and a regional Indian Ocean MOM4p1 configuration with 25 km horizontal resolution and 1 m vertical resolution near the surface. Inter-annual global simulations with Coordinated Ocean-Ice Reference Experiments (CORE-II) surface forcing over years 1992-2005 provide surface boundary conditions. We show that relative to the global simulation, (i) biases in upper ocean temperature, salinity and mixed layer depth are reduced, (ii) sea surface height and upper ocean circulation are closer to observations, and (iii) improvements in model simulation can be attributed to refined resolution, more realistic topography and inclusion of seasonal river runoff. Notably, the surface salinity bias is reduced to less than 0.1 psu over the Bay of Bengal using relatively weak restoring to observations, and the model simulates the strong, shallow halocline often observed in the North Bay of Bengal. There is marked improvement in subsurface salinity and temperature, as well as mixed layer depth in the Bay of Bengal. Major seasonal signatures in observed sea surface height anomaly in the tropical Indian Ocean, including the coastal waveguide around the Indian peninsula, are simulated with great fidelity. The use of realistic topography and seasonal river runoff brings the three dimensional structure of the East India Coastal Current and West India Coastal Current much closer to observations. As a result, the incursion of low salinity Bay of Bengal water into the southeastern Arabian Sea is more realistic. (C) 2013 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a comparison of the Global Ocean Data Assimilation System (GODAS) five-day ocean analyses against in situ daily data from Research Moored Array for African-Asian-Australian Monsoon Analysis and Prediction (RAMA) moorings at locations 90 degrees E, 12 degrees N; 90 degrees E, 8 degrees N; 90 degrees E, 0 degrees N and 90 degrees E, 1.5 degrees S in the equatorial Indian Ocean and the Bay of Bengal during 2002-2008. We find that the GODAS temperature analysis does not adequately capture a prominent signal of Indian Ocean dipole mode of 2006 seen in the mooring data, particularly at 90 degrees E 0 degrees N and 90 degrees E 1.5 degrees S in the eastern India Ocean. The analysis, using simple statistics such as bias and root-mean-square deviation, indicates that standard GODAS temperature has definite biases and significant differences with observations on both subseasonal and seasonal scales. Subsurface salinity has serious deficiencies as well, but this may not be surprising considering the poorly constrained fresh water forcing, and possible model deficiencies in subsurface vertical mixing. GODAS reanalysis needs improvement to make it more useful for study of climate variability and for creating ocean initial conditions for prediction.