919 resultados para Image-based mesh generation
Resumo:
This article reports on a lossless data hiding scheme for digital images where the data hiding capacity is either determined by minimum acceptable subjective quality or by the demanded capacity. In the proposed method data is hidden within the image prediction errors, where the most well-known prediction algorithms such as the median edge detector (MED), gradient adjacent prediction (GAP) and Jiang prediction are tested for this purpose. In this method, first the histogram of the prediction errors of images are computed and then based on the required capacity or desired image quality, the prediction error values of frequencies larger than this capacity are shifted. The empty space created by such a shift is used for embedding the data. Experimental results show distinct superiority of the image prediction error histogram over the conventional image histogram itself, due to much narrower spectrum of the former over the latter. We have also devised an adaptive method for hiding data, where subjective quality is traded for data hiding capacity. Here the positive and negative error values are chosen such that the sum of their frequencies on the histogram is just above the given capacity or above a certain quality.
Resumo:
In this paper, we consider active sampling to label pixels grouped with hierarchical clustering. The objective of the method is to match the data relationships discovered by the clustering algorithm with the user's desired class semantics. The first is represented as a complete tree to be pruned and the second is iteratively provided by the user. The active learning algorithm proposed searches the pruning of the tree that best matches the labels of the sampled points. By choosing the part of the tree to sample from according to current pruning's uncertainty, sampling is focused on most uncertain clusters. This way, large clusters for which the class membership is already fixed are no longer queried and sampling is focused on division of clusters showing mixed labels. The model is tested on a VHR image in a multiclass classification setting. The method clearly outperforms random sampling in a transductive setting, but cannot generalize to unseen data, since it aims at optimizing the classification of a given cluster structure.
Resumo:
In this work, we propose a copula-based method to generate synthetic gene expression data that account for marginal and joint probability distributions features captured from real data. Our method allows us to implant significant genes in the synthetic dataset in a controlled manner, giving the possibility of testing new detection algorithms under more realistic environments.
Resumo:
Vehicle operations in underwater environments are often compromised by poor visibility conditions. For instance, the perception range of optical devices is heavily constrained in turbid waters, thus complicating navigation and mapping tasks in environments such as harbors, bays, or rivers. A new generation of high-definition forward-looking sonars providing acoustic imagery at high frame rates has recently emerged as a promising alternative for working under these challenging conditions. However, the characteristics of the sonar data introduce difficulties in image registration, a key step in mosaicing and motion estimation applications. In this work, we propose the use of a Fourier-based registration technique capable of handling the low resolution, noise, and artifacts associated with sonar image formation. When compared to a state-of-the art region-based technique, our approach shows superior performance in the alignment of both consecutive and nonconsecutive views as well as higher robustness in featureless environments. The method is used to compute pose constraints between sonar frames that, integrated inside a global alignment framework, enable the rendering of consistent acoustic mosaics with high detail and increased resolution. An extensive experimental section is reported showing results in relevant field applications, such as ship hull inspection and harbor mapping
Resumo:
Rapport de recherche
Resumo:
There are many ways to generate geometrical models for numerical simulation, and most of them start with a segmentation step to extract the boundaries of the regions of interest. This paper presents an algorithm to generate a patient-specific three-dimensional geometric model, based on a tetrahedral mesh, without an initial extraction of contours from the volumetric data. Using the information directly available in the data, such as gray levels, we built a metric to drive a mesh adaptation process. The metric is used to specify the size and orientation of the tetrahedral elements everywhere in the mesh. Our method, which produces anisotropic meshes, gives good results with synthetic and real MRI data. The resulting model quality has been evaluated qualitatively and quantitatively by comparing it with an analytical solution and with a segmentation made by an expert. Results show that our method gives, in 90% of the cases, as good or better meshes as a similar isotropic method, based on the accuracy of the volume reconstruction for a given mesh size. Moreover, a comparison of the Hausdorff distances between adapted meshes of both methods and ground-truth volumes shows that our method decreases reconstruction errors faster. Copyright © 2015 John Wiley & Sons, Ltd.
Resumo:
The thesis introduced the octree and addressed the complete nature of problems encountered, while building and imaging system based on octrees. An efficient Bottom-up recursive algorithm and its iterative counterpart for the raster to octree conversion of CAT scan slices, to improve the speed of generating the octree from the slices, the possibility of utilizing the inherent parallesism in the conversion programme is explored in this thesis. The octree node, which stores the volume information in cube often stores the average density information could lead to “patchy”distribution of density during the image reconstruction. In an attempt to alleviate this problem and explored the possibility of using VQ to represent the imformation contained within a cube. Considering the ease of accommodating the process of compressing the information during the generation of octrees from CAT scan slices, proposed use of wavelet transforms to generate the compressed information in a cube. The modified algorithm for generating octrees from the slices is shown to accommodate the eavelet compression easily. Rendering the stored information in the form of octree is a complex task, necessarily because of the requirement to display the volumetric information. The reys traced from each cube in the octree, sum up the density en-route, accounting for the opacities and transparencies produced due to variations in density.
Resumo:
International School of Photonics, Cochin University of Science and Technology
Resumo:
Wind energy has emerged as a major sustainable source of energy.The efficiency of wind power generation by wind mills has improved a lot during the last three decades.There is still further scope for maximising the conversion of wind energy into mechanical energy.In this context,the wind turbine rotor dynamics has great significance.The present work aims at a comprehensive study of the Horizontal Axis Wind Turbine (HAWT) aerodynamics by numerically solving the fluid dynamic equations with the help of a finite-volume Navier-Stokes CFD solver.As a more general goal,the study aims at providing the capabilities of modern numerical techniques for the complex fluid dynamic problems of HAWT.The main purpose is hence to maximize the physics of power extraction by wind turbines.This research demonstrates the potential of an incompressible Navier-Stokes CFD method for the aerodynamic power performance analysis of horizontal axis wind turbine.The National Renewable Energy Laboratory USA-NREL (Technical Report NREL/Cp-500-28589) had carried out an experimental work aimed at the real time performance prediction of horizontal axis wind turbine.In addition to a comparison between the results reported by NREL made and CFD simulations,comparisons are made for the local flow angle at several stations ahead of the wind turbine blades.The comparison has shown that fairly good predictions can be made for pressure distribution and torque.Subsequently, the wind-field effects on the blade aerodynamics,as well as the blade/tower interaction,were investigated.The selected case corresponded to a 12.5 m/s up-wind HAWT at zero degree of yaw angle and a rotational speed of 25 rpm.The results obtained suggest that the present can cope well with the flows encountered around wind turbines.The areodynamic performance of the turbine and the flow details near and off the turbine blades and tower can be analysed using theses results.The aerodynamic performance of airfoils differs from one another.The performance mainly depends on co-efficient of performnace,co-efficient of lift,co-efficient of drag, velocity of fluid and angle of attack.This study shows that the velocity is not constant for all angles of attack of different airfoils.The performance parameters are calculated analytically and are compared with the standardized performance tests.For different angles of ,the velocity stall is determined for the better performance of a system with respect to velocity.The research addresses the effect of surface roughness factor on the blade surface at various sections.The numerical results were found to be in agreement with the experimental data.A relative advantage of the theoretical aerofoil design method is that it allows many different concepts to be explored economically.Such efforts are generally impractical in wind tunnels because of time and money constraints.Thus, the need for a theoretical aerofoil design method is threefold:first for the design of aerofoil that fall outside the range of applicability of existing calalogs:second,for the design of aerofoil that more exactly match the requirements of the intended application:and third,for the economic exploration of many aerofoil concepts.From the results obtained for the different aerofoils,the velocity is not constant for all angles of attack.The results obtained for the aerofoil mainly depend on angle of attack and velocity.The vortex generator technique was meticulously studies with the formulation of the specification for the right angle shaped vortex generators-VG.The results were validated in accordance with the primary analysis phase.The results were found to be in good agreement with the power curve.The introduction of correct size VGs at appropriate locations over the blades of the selected HAWT was found to increase the power generation by about 4%
Resumo:
This paper proposes a region based image retrieval system using the local colour and texture features of image sub regions. The regions of interest (ROI) are roughly identified by segmenting the image into fixed partitions, finding the edge map and applying morphological dilation. The colour and texture features of the ROIs are computed from the histograms of the quantized HSV colour space and Gray Level co- occurrence matrix (GLCM) respectively. Each ROI of the query image is compared with same number of ROIs of the target image that are arranged in the descending order of white pixel density in the regions, using Euclidean distance measure for similarity computation. Preliminary experimental results show that the proposed method provides better retrieving result than retrieval using some of the existing methods.
Resumo:
This paper proposes a content based image retrieval (CBIR) system using the local colour and texture features of selected image sub-blocks and global colour and shape features of the image. The image sub-blocks are roughly identified by segmenting the image into partitions of different configuration, finding the edge density in each partition using edge thresholding, morphological dilation. The colour and texture features of the identified regions are computed from the histograms of the quantized HSV colour space and Gray Level Co- occurrence Matrix (GLCM) respectively. A combined colour and texture feature vector is computed for each region. The shape features are computed from the Edge Histogram Descriptor (EHD). A modified Integrated Region Matching (IRM) algorithm is used for finding the minimum distance between the sub-blocks of the query and target image. Experimental results show that the proposed method provides better retrieving result than retrieval using some of the existing methods
Resumo:
In this thesis, different techniques for image analysis of high density microarrays have been investigated. Most of the existing image analysis techniques require prior knowledge of image specific parameters and direct user intervention for microarray image quantification. The objective of this research work was to develop of a fully automated image analysis method capable of accurately quantifying the intensity information from high density microarrays images. The method should be robust against noise and contaminations that commonly occur in different stages of microarray development.
Resumo:
Content Based Image Retrieval is one of the prominent areas in Computer Vision and Image Processing. Recognition of handwritten characters has been a popular area of research for many years and still remains an open problem. The proposed system uses visual image queries for retrieving similar images from database of Malayalam handwritten characters. Local Binary Pattern (LBP) descriptors of the query images are extracted and those features are compared with the features of the images in database for retrieving desired characters. This system with local binary pattern gives excellent retrieval performance
Resumo:
Retrieval of similar anatomical structures of brain MR images across patients would help the expert in diagnosis of diseases. In this paper, modified local binary pattern with ternary encoding called modified local ternary pattern (MOD-LTP) is introduced, which is more discriminant and less sensitive to noise in near-uniform regions, to locate slices belonging to the same level from the brain MR image database. The ternary encoding depends on a threshold, which is a user-specified one or calculated locally, based on the variance of the pixel intensities in each window. The variancebased local threshold makes the MOD-LTP more robust to noise and global illumination changes. The retrieval performance is shown to improve by taking region-based moment features of MODLTP and iteratively reweighting the moment features of MOD-LTP based on the user’s feedback. The average rank obtained using iterated and weighted moment features of MOD-LTP with a local variance-based threshold, is one to two times better than rotational invariant LBP (Unay, D., Ekin, A. and Jasinschi, R.S. (2010) Local structure-based region-of-interest retrieval in brain MR images. IEEE Trans. Inf. Technol. Biomed., 14, 897–903.) in retrieving the first 10 relevant images
Resumo:
Magnetic Resonance Imaging play a vital role in the decision-diagnosis process of brain MR images. For an accurate diagnosis of brain related problems, the experts mostly compares both T1 and T2 weighted images as the information presented in these two images are complementary. In this paper, rotational and translational invariant form of Local binary Pattern (LBP) with additional gray scale information is used to retrieve similar slices of T1 weighted images from T2 weighted images or vice versa. The incorporation of additional gray scale information on LBP can extract more local texture information. The accuracy of retrieval can be improved by extracting moment features of LBP and reweighting the features based on users’ feedback. Here retrieval is done in a single subject scenario where similar images of a particular subject at a particular level are retrieved, and multiple subjects scenario where relevant images at a particular level across the subjects are retrieved