923 resultados para Image quality perception
Resumo:
OBJECTIVES: During its German pilot phase, the EuroCMR (European Cardiovascular Magnetic Resonance) registry sought to evaluate indications, image quality, safety, and impact on patient management of routine CMR. BACKGROUND: CMR has a broad range of applications and is increasingly used in clinical practice. METHODS: This was a multicenter registry with consecutive enrollment of patients in 20 German centers. RESULTS: A total of 11,040 consecutive patients were enrolled. Eighty-eight percent of patients received gadolinium-based contrast agents. Twenty-one percent underwent adenosine perfusion, and 11% high-dose dobutamine-stress CMR. The most important indications were workup of myocarditis/cardiomyopathies (32%), risk stratification in suspected coronary artery disease/ischemia (31%), as well as assessment of viability (15%). Image quality was good in 90.1%, moderate in 8.1%, and inadequate in 1.8% of cases. Severe complications occurred in 0.05%, and were all associated with stress testing. No patient died during or due to CMR. In nearly two-thirds of patients, CMR findings impacted patient management. Importantly, in 16% of cases the final diagnosis based on CMR was different from the diagnosis before CMR, leading to a complete change in management. In more than 86% of cases, CMR was capable of satisfying all imaging needs so that no further imaging was required. CONCLUSIONS: CMR is frequently performed in clinical practice in many participating centers. The most important indications are workup of myocarditis/cardiomyopathies, risk stratification in suspected coronary artery disease/ischemia, and assessment of viability. CMR imaging as used in the centers of the pilot registry is a safe procedure, has diagnostic image quality in 98% of cases, and its results have strong impact on patient management.
Resumo:
OBJECTIVE: Surface magnetic resonance imaging (MRI) for aortic plaque assessment is limited by the trade-off between penetration depth and signal-to-noise ratio (SNR). For imaging the deep seated aorta, a combined surface and transesophageal MRI (TEMRI) technique was developed 1) to determine the individual contribution of TEMRI and surface coils to the combined signal, 2) to measure the signal improvement of a combined surface and TEMRI over surface MRI, and 3) to assess for reproducibility of plaque dimension analysis. METHODS AND RESULTS: In 24 patients six black blood proton-density/T2-weighted fast-spin echo images were obtained using three surface and one TEMRI coil for SNR measurements. Reproducibility of plaque dimensions (combined surface and TEMRI) was measured in 10 patients. TEMRI contributed 68% of the signal in the aortic arch and descending aorta, whereas the overall signal gain using the combined technique was up to 225%. Plaque volume measurements had an intraclass correlation coefficient of as high as 0.97. CONCLUSION: Plaque volume measurements for the quantification of aortic plaque size are highly reproducible for combined surface and TEMRI. The TEMRI coil contributes considerably to the aortic MR signal. The combined surface and TEMRI approach improves aortic signal significantly as compared to surface coils alone. CONDENSED ABSTRACT: Conventional MRI aortic plaque visualization is limited by the penetration depth of MRI surface coils and may lead to suboptimal image quality with insufficient reproducibility. By combining a transesophageal MRI (TEMRI) with surface MRI coils we enhanced local and overall image SNR for improved image quality and reproducibility.
Resumo:
PURPOSE: Apoptotic arterial wall vascular smooth muscle cell death is known to contribute to plaque vulnerability and rupture. Novel apoptotic markers like apolipoprotein C-I have been implicated in apoptotic human vascular smooth muscle cell death via recruiting a neutral sphingomyelinase (N-SMase)-ceramide pathway. In vivo relevance of these observations in an animal model of plaque rupture has not been shown. METHODS AND RESULTS: Using Watanabe rabbits, we investigated three different groups (group 1, three normal Watanabe rabbits; group 2, six Watanabe rabbits fed with high cholesterol diet for 3 months; group 3, five Watanabe rabbits with similar diet but additional endothelial denudation). We followed progression of atherosclerosis to pharmacologically induced plaque rupture non-invasively using novel 3D magnetic resonance Fast-Field-Echo angiography (TR=7.2, TE=3.6 ms, matrix=512 x 512) and Fast-Spin-Echo vessel wall imaging methods (TR=3 heart beats, TE=10.5 ms, matrix=304 x 304) on 1.5 T MRI. MRI provided excellent image quality with good MRI versus histology vessel wall thickness correlation (r=0.8). In six animals of group 2/3 MRI detected neo-intimal dissection in the abdominal aorta which was accompanied by immuno-histochemical demonstration of concomitant aforementioned novel apoptotic markers, previously implicated in the apoptotic smooth muscle cell death in vitro. CONCLUSIONS: Our studies suggest a potential role for the signal transduction pathway involving apolipoprotein C-I for in vivo apoptosis and atherosclerotic plaque rupture visualized by MRI.
Resumo:
The large spatial inhomogeneity in transmit B(1) field (B(1)(+)) observable in human MR images at high static magnetic fields (B(0)) severely impairs image quality. To overcome this effect in brain T(1)-weighted images, the MPRAGE sequence was modified to generate two different images at different inversion times, MP2RAGE. By combining the two images in a novel fashion, it was possible to create T(1)-weighted images where the result image was free of proton density contrast, T(2) contrast, reception bias field, and, to first order, transmit field inhomogeneity. MP2RAGE sequence parameters were optimized using Bloch equations to maximize contrast-to-noise ratio per unit of time between brain tissues and minimize the effect of B(1)(+) variations through space. Images of high anatomical quality and excellent brain tissue differentiation suitable for applications such as segmentation and voxel-based morphometry were obtained at 3 and 7 T. From such T(1)-weighted images, acquired within 12 min, high-resolution 3D T(1) maps were routinely calculated at 7 T with sub-millimeter voxel resolution (0.65-0.85 mm isotropic). T(1) maps were validated in phantom experiments. In humans, the T(1) values obtained at 7 T were 1.15+/-0.06 s for white matter (WM) and 1.92+/-0.16 s for grey matter (GM), in good agreement with literature values obtained at lower spatial resolution. At 3 T, where whole-brain acquisitions with 1 mm isotropic voxels were acquired in 8 min, the T(1) values obtained (0.81+/-0.03 s for WM and 1.35+/-0.05 for GM) were once again found to be in very good agreement with values in the literature.
Resumo:
Four standard radiation qualities (from RQA 3 to RQA 9) were used to compare the imaging performance of a computed radiography (CR) system (general purpose and high resolution phosphor plates of a Kodak CR 9000 system), a selenium-based direct flat panel detector (Kodak Direct View DR 9000), and a conventional screen-film system (Kodak T-MAT L/RA film with a 3M Trimax Regular screen of speed 400) in conventional radiography. Reference exposure levels were chosen according to the manufacturer's recommendations to be representative of clinical practice (exposure index of 1700 for digital systems and a film optical density of 1.4). With the exception of the RQA 3 beam quality, the exposure levels needed to produce a mean digital signal of 1700 were higher than those needed to obtain a mean film optical density of 1.4. In spite of intense developments in the field of digital detectors, screen-film systems are still very efficient detectors for most of the beam qualities used in radiology. An important outcome of this study is the behavior of the detective quantum efficiency of the digital radiography (DR) system as a function of beam energy. The practice of users to increase beam energy when switching from a screen-film system to a CR system, in order to improve the compromise between patient dose and image quality, might not be appropriate when switching from screen-film to selenium-based DR systems.
Resumo:
OBJECT: To study a scan protocol for coronary magnetic resonance angiography based on multiple breath-holds featuring 1D motion compensation and to compare the resulting image quality to a navigator-gated free-breathing acquisition. Image reconstruction was performed using L1 regularized iterative SENSE. MATERIALS AND METHODS: The effects of respiratory motion on the Cartesian sampling scheme were minimized by performing data acquisition in multiple breath-holds. During the scan, repetitive readouts through a k-space center were used to detect and correct the respiratory displacement of the heart by exploiting the self-navigation principle in image reconstruction. In vivo experiments were performed in nine healthy volunteers and the resulting image quality was compared to a navigator-gated reference in terms of vessel length and sharpness. RESULTS: Acquisition in breath-hold is an effective method to reduce the scan time by more than 30 % compared to the navigator-gated reference. Although an equivalent mean image quality with respect to the reference was achieved with the proposed method, the 1D motion compensation did not work equally well in all cases. CONCLUSION: In general, the image quality scaled with the robustness of the motion compensation. Nevertheless, the featured setup provides a positive basis for future extension with more advanced motion compensation methods.
Resumo:
Purpose: Cardiac 18F-FDG PET is considered as the gold standard to assess myocardial metabolism and infarct size. The myocardial demand for glucose can be influenced by fasting and/or following pharmacological preparation. In the rat, it has been previously shown that fasting combined with preconditioning with acipimox, a nicotinic acid derivate and lipidlowering agent, increased dramatically 18F-FDG uptake in the myocardium. Strategies aimed at reducing infarct scar are evaluated in a variety of mouse models. PET would particularly useful for assessing cardiac viability in the mouse. However, prior knowledge of the best preparation protocol is a prerequisite for accurate measurement of glucose uptake in mice. Therefore, we studied the effect of different protocols on 18F-FDG uptake in the mouse heart.Methods: Mice (n = 15) were separated into three treatment groups according to preconditioning and underwent a 18FDG PET scan. Group 1: No preconditioning (n = 3); Group 2: Overnight fasting (n = 8); and Group 3: Overnight fasting and acipimox (25mg/kg SC) (n = 4). MicroPET images were processed with PMOD to determine 18F-FDG mean standard uptake value (SUV) at 30 min for the whole left ventricle (LV) and for each region of the 17-segments AHA model. For comparisons, we used Mann-Whitney test and multilevel mixed-effects linear regression (Stata 11.0).Results: In total, 27 microPET were performed successfully in 15 animals. Overnight fasting led to a dramatic increase in LV-SUV compared to mice without preconditioning (8.6±0.7g/mL vs. 3.7±1.1g/mL, P<0.001). In addition, LV-SUV was slightly but not significantly higher in animals treated with acipimox compared to animals with overnight fasting alone (10.2±0.5 g/mL, P = 0.06). Fastening increased segmental SUV by 5.1±0.5g/mL as compared to free-feeding mice (from 3.7±0.8g/mL to 8.8±0.4g/mL, P<0.001); segmental-SUV also significantly increased after administration of acipimox (from 8.8±0.4g/mL to 10.1±0.4g/mL, P<0.001).Conclusion: Overnight fasting led to myocardial glucose deprivation and increases 18F-FDG myocardial uptake. Additional administration of acipimox enhances myocardial 18F-FDG uptake, at least at the segmental level. Thus, preconditioning with acipimox may provide better image quality that may help for assessing segmental myocardial metabolism.
Resumo:
PURPOSE: To suppress the noise, by sacrificing some of the signal homogeneity for numerical stability, in uniform T1 weighted (T1w) images obtained with the magnetization prepared 2 rapid gradient echoes sequence (MP2RAGE) and to compare the clinical utility of these robust T1w images against the uniform T1w images. MATERIALS AND METHODS: 8 healthy subjects (29.0±4.1 years; 6 Male), who provided written consent, underwent two scan sessions within a 24 hour period on a 7T head-only scanner. The uniform and robust T1w image volumes were calculated inline on the scanner. Two experienced radiologists qualitatively rated the images for: general image quality; 7T specific artefacts; and, local structure definition. Voxel-based and volume-based morphometry packages were used to compare the segmentation quality between the uniform and robust images. Statistical differences were evaluated by using a positive sided Wilcoxon rank test. RESULTS: The robust image suppresses background noise inside and outside the skull. The inhomogeneity introduced was ranked as mild. The robust image was significantly ranked higher than the uniform image for both observers (observer 1/2, p-value = 0.0006/0.0004). In particular, an improved delineation of the pituitary gland, cerebellar lobes was observed in the robust versus uniform T1w image. The reproducibility of the segmentation results between repeat scans improved (p-value = 0.0004) from an average volumetric difference across structures of ≈6.6% to ≈2.4% for the uniform image and robust T1w image respectively. CONCLUSIONS: The robust T1w image enables MP2RAGE to produce, clinically familiar T1w images, in addition to T1 maps, which can be readily used in uniform morphometry packages.
Resumo:
Em radiologia, a qualidade diagnóstica está intimamente ligada à qualidade de imagens radiográficas. Sendo a qualidade de imagem (QI) o reflexo da exposição do paciente, a sua a maximização não pode ser conseguida a qualquer custo. É fulcral ter sempre em mente que uma boa QI pode significar maior exposição do paciente. Deste modo, a otimização é fundamental e deve-se guiar pela maximização da fração benefícios/riscos, sendo para isso necessário compreender os parâmetros técnicos que influenciam a dose e a QI. Neste trabalho foi feito um estudo dos efeitos dos parâmetros técnicos (tensão de ampola (kVp) e o produto da intensidade do feixe (mA) pelo tempo de exposição (s) (mA*s)) e da filtração adicional tanto na dose como na QI. A medição da dose, para diferentes valores de kVp, mA*s e espessura de cobre (Cu) usada na filtração adicional, foi feita utilizando uma câmara de ionização e um medidor do produto dose-área (DAP). Utilisando o fantoma CDRAD, a QI foi analisada através de Image Quality Figure (IQF) e parâmetros como contraste, ruído, razão sinal-ruído (SNR) e razão contraste-ruído (CNR). Verificou-se que, no modo manual de exposição, a dose varia de forma direta com kVp e mA*s e, no modo semiautomático, a variação é inversa entre o kVp e a dose. Mantendo fixo o kVp e mA*s, a redução da dose pode ser conseguida com recurso à filtração adicional. A QI é degradada quando o kVp aumenta e na presença da filtração adicional. Melhor QI está associada a maiores valores de dose. CNR é pouca efetada pela variação da dose. Com o aumento do DAP, o ruído diminui e a SNR aumenta, com elevada correlação.
Resumo:
The purpose of this study was to investigate the impact of navigator timing on image quality in navigator-gated and real-time motion-corrected, free-breathing, three-dimensional (3D) coronary MR angiography (MRA) with submillimeter spatial image resolution. Both phantom and in vivo investigations were performed. 3D coronary MRA with real-time navigator technology was applied using variable navigator time delays (time delay between the navigator and imaging sequences) and varying spatial resolutions. Quantitative objective and subjective image quality parameters were assessed. For high-resolution imaging, reduced image quality was found as a function of increasing navigator time delay. Lower spatial resolution coronary MRA showed only minor sensitivity to navigator timing. These findings were consistent among volunteers and phantom experiments. In conclusion, for submillimeter navigator-gated and real-time motion-corrected 3D coronary MRA, shortening the time delay between the navigator and the imaging portion of the sequence becomes increasingly important for improved spatial resolution.
Resumo:
OBJECTIVE. The purpose of this study was to improve the blood-pool signal-to-noise ratio (SNR) and blood-myocardium contrast-to-noise ratio (CNR) of slow-infusion 3-T whole-heart coronary MR angiography (MRA).SUBJECTS AND METHODS. In 2D sensitivity encoding (SENSE), the number of acquired k-space lines is reduced, allowing less radiofrequency excitation per cardiac cycle and a longer TR. The former can be exploited for signal enhancement with a higher radiofrequency excitation angle, and the latter leads to noise reduction due to lower data-sampling bandwidth. Both effects contribute to SNR gain in coronary MRA when spatial and temporal resolution and acquisition time remain identical. Numeric simulation was performed to select the optimal 2D SENSE pulse sequence parameters and predict the SNR gain. Eleven patients underwent conventional unenhanced and the proposed 2D SENSE contrast-enhanced coronary MRA acquisition. Blood-pool SNR, blood-myocardium CNR, visible vessel length, vessel sharpness, and number of side branches were evaluated.RESULTS. Consistent with the numeric simulation, using 2D SENSE in contrast-enhanced coronary MRA resulted in significant improvement in aortic blood-pool SNR (unenhanced vs contrast-enhanced, 37.5 +/- 14.7 vs 121.3 +/- 44.0; p < 0.05) and CNR (14.4 +/- 6.9 vs 101.5 +/- 40.8; p < 0.05) in the patient sample. A longer length of left anterior descending coronary artery was visualized, but vessel sharpness, coronary artery coverage, and image quality score were not improved with the proposed approach.CONCLUSION. In combination with contrast administration, 2D SENSE was found effective in improving SNR and CNR in 3-T whole-heart coronary MRA. Further investigation of cardiac motion compensation is necessary to exploit the SNR and CNR advantages and to achieve submillimeter spatial resolution.
Resumo:
Purpose of review: An overview of recent advances in structural neuroimaging and their impact on movement disorders research is presented. Recent findings: Novel developments in computational neuroanatomy and improvements in magnetic resonance image quality have brought further insight into the pathophysiology of movement disorders. Sophisticated automated techniques allow for sensitive and reliable in-vivo differentiation of phenotype/genotype related traits and their interaction even at presymptomatic stages of disease. Summary: Voxel-based morphometry consistently demonstrates well defined patterns of brain structure changes in movement disorders. Advanced stages of idiopathic Parkinson's disease are characterized by grey matter volume decreases in basal ganglia. Depending on the presence of cognitive impairment, volume changes are reported in widespread cortical and limbic areas. Atypical Parkinsonian syndromes still pose a challenge for accurate morphometry-based classification, especially in early stages of disease progression. Essential tremor has been mainly associated with thalamic and cerebellar changes. Studies on preclinical Huntington's disease show progressive loss of tissue in the caudate and cortical thinning related to distinct motor and cognitive phenotypes. Basal ganglia volume in primary dystonia reveals an interaction between genotype and phenotype such that brain structure changes are modulated by the presence of symptoms under the influence of genetic factors. Tics in Tourette's syndrome correlate with brain structure changes in limbic, motor and associative fronto-striato-parietal circuits. Computational neuroanatomy provides useful tools for in-vivo assessment of brain structure in movement disorders, allowing for accurate classification in early clinical stages as well as for monitoring therapy effects and/or disease progression.
Resumo:
BACKGROUND: Cardiovascular magnetic resonance (CMR) is increasingly used in daily clinical practice. However, little is known about its clinical utility such as image quality, safety and impact on patient management. In addition, there is limited information about the potential of CMR to acquire prognostic information. METHODS: The European Cardiovascular Magnetic Resonance Registry (EuroCMR Registry) will consist of two parts: 1) Multicenter registry with consecutive enrolment of patients scanned in all participating European CMR centres using web based online case record forms. 2) Prospective clinical follow up of patients with suspected coronary artery disease (CAD) and hypertrophic cardiomyopathy (HCM) every 12 months after enrolment to assess prognostic data. CONCLUSION: The EuroCMR Registry offers an opportunity to provide information about the clinical utility of routine CMR in a large number of cases and a diverse population. Furthermore it has the potential to gather information about the prognostic value of CMR in specific patient populations.
Resumo:
Combined positron emission tomography and computed tomography (PET/CT) scanners play a major role in medicine for in vivo imaging in an increasing number of diseases in oncology, cardiology, neurology, and psychiatry. With the advent of short-lived radioisotopes other than 18F and newer scanners, there is a need to optimize radioisotope activity and acquisition protocols, as well as to compare scanner performances on an objective basis. The Discovery-LS (D-LS) was among the first clinical PET/CT scanners to be developed and has been extensively characterized with older National Electrical Manufacturer Association (NEMA) NU 2-1994 standards. At the time of publication of the latest version of the standards (NU 2-2001) that have been adapted for whole-body imaging under clinical conditions, more recent models from the same manufacturer, i.e., Discovery-ST (D-ST) and Discovery-STE (D-STE), were commercially available. We report on the full characterization both in the two- and three-dimensional acquisition mode of the D-LS according to latest NEMA NU 2-2001 standards (spatial resolution, sensitivity, count rate performance, accuracy of count losses, and random coincidence correction and image quality), as well as a detailed comparison with the newer D-ST widely used and whose characteristics are already published.
Resumo:
BACKGROUND: Transient balanced steady-state free-precession (bSSFP) has shown substantial promise for noninvasive assessment of coronary arteries but its utilization at 3.0 T and above has been hampered by susceptibility to field inhomogeneities that degrade image quality. The purpose of this work was to refine, implement, and test a robust, practical single-breathhold bSSFP coronary MRA sequence at 3.0 T and to test the reproducibility of the technique. METHODS: A 3D, volume-targeted, high-resolution bSSFP sequence was implemented. Localized image-based shimming was performed to minimize inhomogeneities of both the static magnetic field and the radio frequency excitation field. Fifteen healthy volunteers and three patients with coronary artery disease underwent examination with the bSSFP sequence (scan time = 20.5 ± 2.0 seconds), and acquisitions were repeated in nine subjects. The images were quantitatively analyzed using a semi-automated software tool, and the repeatability and reproducibility of measurements were determined using regression analysis and intra-class correlation coefficient (ICC), in a blinded manner. RESULTS: The 3D bSSFP sequence provided uniform, high-quality depiction of coronary arteries (n = 20). The average visible vessel length of 100.5 ± 6.3 mm and sharpness of 55 ± 2% compared favorably with earlier reported navigator-gated bSSFP and gradient echo sequences at 3.0 T. Length measurements demonstrated a highly statistically significant degree of inter-observer (r = 0.994, ICC = 0.993), intra-observer (r = 0.894, ICC = 0.896), and inter-scan concordance (r = 0.980, ICC = 0.974). Furthermore, ICC values demonstrated excellent intra-observer, inter-observer, and inter-scan agreement for vessel diameter measurements (ICC = 0.987, 0.976, and 0.961, respectively), and vessel sharpness values (ICC = 0.989, 0.938, and 0.904, respectively). CONCLUSIONS: The 3D bSSFP acquisition, using a state-of-the-art MR scanner equipped with recently available technologies such as multi-transmit, 32-channel cardiac coil, and localized B0 and B1+ shimming, allows accelerated and reproducible multi-segment assessment of the major coronary arteries at 3.0 T in a single breathhold. This rapid sequence may be especially useful for functional imaging of the coronaries where the acquisition time is limited by the stress duration and in cases where low navigator-gating efficiency prohibits acquisition of a free breathing scan in a reasonable time period.