865 resultados para Image foresting transform


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Magdeburg, Univ., Fak. für Informatik, Diss., 2015

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Michael Friebe, editor ; Otto-von-Guericke-Universität Magdeburg, Institut für Medizintechnik, Lehrstuhl Kathetertechnologie und bildgesteuerte Therapie (INKA - Intelligente Katheter), Forschungscampus STIMULATE (Solution Centre for Image Guided Local Therapies)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

En aquest article es fa una descripció dels procediments realitzats per enregistrar dues imatges geomètricament, de forma automàtica, si es pren la primera com a imatge de referència. Es comparen els resultats obtinguts mitjançant tres mètodes. El primer mètode és el d’enregistrament clàssic en domini espacial maximitzant la correlació creuada (MCC)[1]. El segon mètode es basa en aplicar l’enregistrament MCC conjuntament amb un anàlisi multiescala a partir de transformades wavelet [2]. El tercer mètode és una variant de l’anterior que es situa a mig camí dels dos. Per cada un dels mètodes s’obté una estimació dels coeficients de la transformació que relaciona les dues imatges. A continuació es transforma per cada cas la segona imatge i es georeferencia respecte la primera. I per acabar es proposen unes mesures quantitatives que permeten discutir i comparar els resultats obtinguts amb cada mètode.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In 1749, Jacques de Vaucanson patented his or tour pour tirer la soie or spindle for silk reeling. In that same year he presented his invention to the Academy of the Sciences in Paris, of which he was a member1. Jacques de Vaucanson was born in Grenoble, France, in 1709, and died in Paris in 1782. In 1741 he had been appointed inspector of silk manufactures by Louis XV. He set about reorganizing the silk industry in France, in considerable difficulty at the time due to foreign competition. Given Vaucanson’s position, his invention was intended to replace the traditional Piémontes method, and had an immediate impact upon the silk industry in France and all over Europe.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

JPEG 2000 és un estàndard de compressió d'imatges que utilitza tècniques estat de l’art basades en la transformada wavelet. Els principals avantatges són la millor compressió, la possibilitat d’operar amb dades comprimides i que es pot comprimir amb i sense pèrdua amb el mateix mètode. BOI és la implementació de JPEG 2000 del Grup de Compressió Interactiva d’Imatges del departament d’Enginyeria de la Informació i les Comunicacions, pensada per entendre, criticar i millorar les tecnologies de JPEG 2000. La nova versió intenta arribar a tots els extrems de l’estàndard on la versió anterior no va arribar.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a semisupervised support vector machine (SVM) that integrates the information of both labeled and unlabeled pixels efficiently. Method's performance is illustrated in the relevant problem of very high resolution image classification of urban areas. The SVM is trained with the linear combination of two kernels: a base kernel working only with labeled examples is deformed by a likelihood kernel encoding similarities between labeled and unlabeled examples. Results obtained on very high resolution (VHR) multispectral and hyperspectral images show the relevance of the method in the context of urban image classification. Also, its simplicity and the few parameters involved make the method versatile and workable by unexperienced users.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

JPEG2000 és un estàndard de compressió d’imatges que utilitza la transformada wavelet i, posteriorment, una quantificació uniforme dels coeficients amb dead-zone. Els coeficients wavelet presenten certes dependències tant estadístiques com visuals. Les dependències estadístiques es tenen en compte a l'esquema JPEG2000, no obstant, no passa el mateix amb les dependències visuals. En aquest treball, es pretén trobar una representació més adaptada al sistema visual que la que proporciona JPEG2000 directament. Per trobar-la utilitzarem la normalització divisiva dels coeficients, tècnica que ja ha demostrat resultats tant en decorrelació estadística de coeficients com perceptiva. Idealment, el que es voldria fer és reconvertir els coeficients a un espai de valors en els quals un valor més elevat dels coeficients impliqui un valor més elevat d'aportació visual, i utilitzar aquest espai de valors per a codificar. A la pràctica, però, volem que el nostre sistema de codificació estigui integrat a un estàndard. És per això que utilitzarem JPEG2000, estàndard de la ITU que permet una elecció de les distorsions en la codificació, i utilitzarem la distorsió en el domini de coeficients normalitzats com a mesura de distorsió per a escollir quines dades s'envien abans.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

"Vegeu el resum a l'inici del document del fitxer adjunt."

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The investigation of perceptual and cognitive functions with non-invasive brain imaging methods critically depends on the careful selection of stimuli for use in experiments. For example, it must be verified that any observed effects follow from the parameter of interest (e.g. semantic category) rather than other low-level physical features (e.g. luminance, or spectral properties). Otherwise, interpretation of results is confounded. Often, researchers circumvent this issue by including additional control conditions or tasks, both of which are flawed and also prolong experiments. Here, we present some new approaches for controlling classes of stimuli intended for use in cognitive neuroscience, however these methods can be readily extrapolated to other applications and stimulus modalities. Our approach is comprised of two levels. The first level aims at equalizing individual stimuli in terms of their mean luminance. Each data point in the stimulus is adjusted to a standardized value based on a standard value across the stimulus battery. The second level analyzes two populations of stimuli along their spectral properties (i.e. spatial frequency) using a dissimilarity metric that equals the root mean square of the distance between two populations of objects as a function of spatial frequency along x- and y-dimensions of the image. Randomized permutations are used to obtain a minimal value between the populations to minimize, in a completely data-driven manner, the spectral differences between image sets. While another paper in this issue applies these methods in the case of acoustic stimuli (Aeschlimann et al., Brain Topogr 2008), we illustrate this approach here in detail for complex visual stimuli.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Defining an efficient training set is one of the most delicate phases for the success of remote sensing image classification routines. The complexity of the problem, the limited temporal and financial resources, as well as the high intraclass variance can make an algorithm fail if it is trained with a suboptimal dataset. Active learning aims at building efficient training sets by iteratively improving the model performance through sampling. A user-defined heuristic ranks the unlabeled pixels according to a function of the uncertainty of their class membership and then the user is asked to provide labels for the most uncertain pixels. This paper reviews and tests the main families of active learning algorithms: committee, large margin, and posterior probability-based. For each of them, the most recent advances in the remote sensing community are discussed and some heuristics are detailed and tested. Several challenging remote sensing scenarios are considered, including very high spatial resolution and hyperspectral image classification. Finally, guidelines for choosing the good architecture are provided for new and/or unexperienced user.