973 resultados para Idaho National Engineering Laboratory.
Resumo:
Each no. has also a distinctive title.
Resumo:
Sponsored jointly by the Welding Research Council and the Department of the Navy.
Resumo:
This paper presents and interprets results of experimental measurements of the spatial gas hold-up distribution in a 3 (3) glass rectangular flotation cell at the JKMRC using two different techniques. The gas hold-up device with the capturing technique was developed at the JKMRC and has been used widely in the P9 project(1) while the one with conductivity technique was developed at the CSIRO Thermal and Fluids Engineering laboratory at Highett, Victoria, Australia. Measurements were conducted at more than 64 locations in the cell to determine the local gas hold-up distribution in the cell. Since the measurements using the two techniques were conducted at the same locations, the results may be compared with each other. The results indicate that the gas hold-up varies widely inside the flotation cell. The gas hold-up distributions measured by the two techniques are relatively similar except in some locations which can be reasonably explained. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
This investigation originated from work by Dr. A.H. McIlraith of the National Physical Laboratory who, in 1966, described a new type of charged particle oscillator. This makes use of two equal cylindrical electrodes to constrain the particles in such a way that they follow extremely long oscillatory paths between the electrodes under the influence of an electrostatic field alone. The object of this work has been to study the principle of the oscillator in detail and to investigate its properties and applications. Any device which is capable of creating long electron trajectories has potential application in the field of ultra high vacuum technology. It was therefore considered that a critical review of the problems associated with the production and measurement of ultra high vacuum was relevant in the initial stages of the work. The oscillator has been applied with a considerable degree of success as a high energy electrostatic ion source. This offers several advantages over existing ion sources. It can be operated at much lower pressures without the need of a magnetic field. The oscillator principle has also been applied as a thermionic ionization gauge and has been compared with other ionization gauges to pressures as low as 5 x 10- 11 torr.. This new gauge exhibited a number of advantages over most of the existing gauges. Finally the oscillator has been used in an evaporation ion pump and has exhibited fairly high pumping speeds for argon gas relative to those for nitrogen. This investigation supports the original work of Dr. A.H. McIlraith and shows that his proposed oscillator has considerable potential in the fields of vacuum technology and electron physics.
Resumo:
Interactions between the wakes in a flow past a row of square bars are investigated by numerical simulations, the linear stability analysis and the bifurcation analysis. It is assumed that the row of square bars is placed across a uniform flow. Two-dimensional and incompressible flow field is also assumed. The flow is steady and symmetric along a streamwise centerline through the center of each square bar at low Reynolds numbers. However, it becomes unsteady and periodic in time at the Reynolds numbers larger than a critical value, and then the wakes behind the square bars become oscillatory. It is found by numerical simulations that vortices are shed synchronously from every couple of adjacent square bars in the same phase or in the anti-phase depending upon the distance between the bars. The synchronous shedding of vortices is clarified to occur due to an instability of the steady symmetric flow by the linear stability analysis. The bifurcation diagram of the flow is obtained and the critical Reynolds number of the instability is evaluated numerically.
Resumo:
This article presents a laser tracker position optimization code based on the tracker uncertainty model developed by the National Physical Laboratory (NPL). The code is able to find the optimal tracker positions for generic measurements involving one or a network of many trackers, and an arbitrary set of targets. The optimization is performed using pattern search or optionally, genetic algorithm (GA) or particle swarm optimization (PSO). Different objective function weightings for the uncertainties of individual points, distance uncertainties between point pairs, and the angular uncertainties between three points can be defined. Constraints for tracker position limits and minimum measurement distances have also been implemented. Furthermore, position optimization taking into account of lines-of-sight (LOS) within complex CAD geometry have also been demonstrated. The code is simple to use and can be a valuable measurement planning tool.
Resumo:
This article presents a laser tracker position optimization code based on the tracker uncertainty model developed by the National Physical Laboratory (NPL). The code is able to find the optimal tracker positions for generic measurements involving one or a network of many trackers, and an arbitrary set of targets. The optimization is performed using pattern search or optionally, genetic algorithm (GA) or particle swarm optimization (PSO). Different objective function weightings for the uncertainties of individual points, distance uncertainties between point pairs, and the angular uncertainties between three points can be defined. Constraints for tracker position limits and minimum measurement distances have also been implemented. Furthermore, position optimization taking into account of lines-of-sight (LOS) within complex CAD geometry have also been demonstrated. The code is simple to use and can be a valuable measurement planning tool.
Resumo:
This report presents the results of testing of the Metris iGPS system performed by the National Physical Laboratory (NPL) and the University of Bath (UoB), with the assistance of Metris, and Airbus at Airbus, Broughton in March 2008. The aim of the test was to determine the performance capability of the iGPS coordinate metrology system by comparison with a reference measurement system based on multilateration implemented using laser trackers. A network of reference points was created using SMR nests fixed to the ground and above ground level on various stands. The reference points were spread out within the measurement volume of approximately 10 m ´ 10 m ´ 2 m. The coordinates of each reference point were determined by the laser tracker survey using multilateration. The expanded uncertainty (k=2) in the relative position of these reference coordinates was estimated to be of the order of 10 µm in x, y and z. A comparison between the iGPS system and the reference system showed that for the test setup, the iGPS system was able to determine lengths up to 12 m with an uncertainty of 170 µm (k=2) and coordinates with an uncertainty of 120 µm in x and y and 190 µm in z (k=2).
Resumo:
In 2009 Avella created a series of innovative fabrics for the Yves St Laurent (YSL) collection, deploying techniques from vehicle engineering to generate new materials for a range of garments. Studying the bonding of layers of material in ceramic plate thermobonding technology, Avella conducted a series of experiments with textiles such as flannel, silk and synthetics, and material such as leather, layered with polyamide foam and textile substrate to create new, textured and insulating fabrics with beautiful surfaces and interesting forms. The lightweight properties of the foam enabled the maximum insulation/weight ratio, and the panel moulding technology brought new forms of draping prêt-a-porter fashion design. Exclusive to YSL, this technique was patented and then shown at the Premiere Vision textiles trade fair in 2010. Much documented in specialist journals this innovation also breached the trade-culture barrier and was reported and documented in mainstream newspapers (New York Herald Tribune). Avella’s background in textile workshop studio experimentation at the RCA brought to YSL textiles research for manufacture, the innovative collaboration between fashion couture and engineering laboratory experiments from vehicle design.