973 resultados para Ice -- Manufacture
Resumo:
Germanium NPN bipolar transistors have been manufactured using phosphorus and boron ion implantation processes. Implantation and subsequent activation processes have been investigated for both dopants. Full activation of phosphorus implants has been achieved with RTA schedules at 535?C without significant junction diffusion. However, boron implant activation was limited and diffusion from a polysilicon source was not practical for base contact formation. Transistors with good output characteristics were achieved with an Early voltage of 55V and common emitter current gain of 30. Both Silvaco process and device simulation tools have been successfully adapted to model the Ge BJT(bipolar junction transistor) performance.
Resumo:
Experiments are reported which show that currents of low energy ("cold") electrons pass unattenuated through crystalline ice at 135 K for energies between zero and 650 meV, up to the maximum studied film thickness of 430 bilayers, indicating negligible apparent trapping. By contrast, both porous amorphous ice and compact crystalline ice at 40 K show efficient electron trapping. Ice at intermediate temperatures reveals metastable trapping that decays within a few hundred seconds at 110 K. Our results are the first to demonstrate full transmission of cold electrons in high temperature water ice and the phenomenon of temperature-dependent trapping.
Resumo:
Morphometric study of modern ice masses is useful because many reconstructions of glaciers traditionally draw on their shape for guidance Here we analyse data derived from the surface profiles of 200 modern ice masses-valley glaciers icefields ice caps and ice sheets with length scales from 10º to 10³ km-from different parts of the world Four profile attributes are investigated relief span and two parameters C* and C that result from using Nye s (1952) theoretical parabola as a profile descriptor C* and C respectively measure each profile s aspect ratio and steepness and are found to decrease in size and variability with span This dependence quantifies the competing influences of unconstrained spreading behaviour of ice flow and bed topography on the profile shape of ice masses which becomes more parabolic as span Increases (with C* and C tending to low values of 2.5-3.3 m ½) The same data reveal coherent minimum bounds in C* and C for modern ice masses that we develop into two new methods of palaeo glacier reconstruction In the first method glacial limits are known from moraines and the bounds are used to constrain the lowest palaeo ice surface consistent with modern profiles We give an example of applying this method over a three-dimensional glacial landscape in Kamchatka In the second method we test the plausibility of existing reconstructions by comparing their C* and C against the modern minimum bounds Of the 86 published palaeo ice masses that we put to this test 88% are found to be plausible The search for other morphometric constraints will help us formalise glacier reconstructions and reduce their uncertainty and subjectiveness