976 resultados para ISOTOPE DATING
Resumo:
Jurassic volcanic formations interlayered with (ammonite-bearing) sediments are common in the Caucasus area; this situation is of interest for the numerical calibration of the poorly documented Jurassic portion of the time scale. However, following petrographic study on thin sections no whole-rocks can be considered reliable geochronometers due to subsequent alteration; from about 20 samples, two were selected for plagioclase dating; one (V134) is probably early Kimmeridgian in age; the other (V136) is probably located in the Lower Bathonian stage according to diagnostic ammonites. Cathodoluminescence (CTL) study has shown that sample V136 was similar to usual volcanic feldspars (blue to green colour); however, the lack of CTL of the V134 plagioclase is a character common to diagenetic feldspars; consequently, in spite of a good optical preservation, this geo-chronometer cannot give an age representative of the time of emplacement of the lava flow. We have combined CTL observation with microprobe analysis in order to document the poorly known CTL behaviour of volcanic feldspars; cations Ti4+ and Fe2+ play a major role in the CTL colour of plagioclases and are able to document the growing history of these feldspars ; phenocrysts are initially rich in Fe2+ (core of the crystals, green in colour), then richer in Ti toward the exterior; microcrysts are even richer in Ti (blue to bright blue). We have also observed that natural CTL colour was modified resulting from acid ``cleaning'' of the separated feldspars : the initial blue or green colour tends to change to yellow or violet, respectively, after acid treatment probably due to oxydation of Fe2+ toward Fe3+. X-ray and microprobe analyses both indicated that plagioclases from sample V134 was near the sodic end member (albite) suggesting a diagenetic origin in this andesitic basalt; In contrast, sample V136 contains a calcic plagioclase of common composition for a doleritic basalt. The K-Ar conventional technique was applied as a preliminary tool for radiometric analysis. The Kimmeridgian Na-plagioclase sample gave a ``rejuvenated'' (85 Ma) apparent age which confirms a late genesis for the separated plagioclase phase; this interpretation is based on CTL observation, X-ray analysis, and microprobe analysis ; these techniques are able to distinguish samples which have been submitted to diagenetic alteration from those which have not. An age consistent with the stratigraphic location has been obtained from sample V136. This age of 161 +/- 3 (2-sigma) Ma, is the first one available from a sample palaeontologically located with reasonable precision within the mid Jurassic time.
Resumo:
According to the annual report of the World Anti-Doping Agency, steroids are the most frequently detected class of doping agents. Detecting the misuse of endogenously occurring steroids, i.e. steroids such as testosterone that are produced naturally by humans, is one of the most challenging issues in doping control analysis. The established thresholds for urinary concentrations or concentration ratios such as the testosterone/epitestosterone quotient are sometimes inconclusive owing to the large biological variation in these parameters.For more than 15 years, doping control laboratories focused on the carbon isotope ratios of endogenous steroids to distinguish between naturally elevated steroid profile parameters and illicit administration of steroids. A variety of different methods has been developed throughout the last decade and the number of different steroids under investigation by isotope ratio mass spectrometry has recently grown considerably. Besides norandrosterone, boldenone was found to occur endogenously in rare cases and the misuse of corticosteroids or epitestosterone can now be detected with the aid of carbon isotope ratios as well. In addition, steroids excreted as sulfoconjugates were investigated, and the first results regarding hydrogen isotope ratios recently became available.All of these will be presented in detail within this review together with some considerations on validation issues and on identification of parameters influencing steroidal isotope ratios in urine.
Resumo:
14C dating models are limited when considering recent groundwater for which the carbon isotopic signature of the total dissolved inorganic carbon (TDIC) is mainly acquired in the unsaturated zone. Reducing the uncertainties of dating thus implies a better identification of the processes controlling the carbon isotopic composition of the TDIC during groundwater recharge. Geochemical interactions between gas, water and carbonates in the unsaturated zone were investigated for two aquifers (the carbonate-free Fontainebleau sands and carbonate-bearing Astian sands, France) in order to identify the respective roles of CO2 and carbonates on the carbon isotopic signatures of the TDIC; this analysis is usually approached using open or closed system terms. Under fully open system conditions, the seasonality of the 13C values in the soil CO2 can lead to important uncertainties regarding the so-called "initial 14C activity" used in 14C correction models. In a carbonate-bearing unsaturated zone such as in the Astian aquifer, we show that an approach based on fully open or closed system conditions is not appropriate. Although the chemical saturation between water and calcite occurs rapidly within the first metre of the unsaturated zone, the carbon isotopic contents (δ13C) of the CO2 and the TDIC evolve downward, impacted by the dissolution-precipitation of the carbonates. In this study, we propose a numerical approach to describe this evolution. The δ13C and the A 14C (radiocarbon activity) of the TDIC at the base of the carbonate-hearing unsaturated zone depends on (i) the δ13C and the A 14C of the TDIC in the soil determined by the soil CO2, (ii) the water's residence time in the unsaturated zone and (iii) the carbonate precipitation-dissolution fluxes. In this type of situation, the carbonate δ13C-A 14C evolutions indicate the presence of secondary calcite and permit the calculation of its accretion flux, equal to ~ 4.5 ± 0.5 x 10-9 mol grock-1 yr-1. More generally, for other sites under temperate climate and with similar properties to the Astian sands site, this approach allows for a reliable determination of the carbon isotopic composition at the base of the unsaturated zone as the indispensable "input function" data of the carbon cycle into the aquifer.
Resumo:
A set of bottled waters from a single natural spring distributed worldwide in polyethylene terephthalate (PET) bottles has been used to examine the effects of storage in plastic polymer material on the isotopic composition (delta(18)O and delta(2)H values) of the water. All samples analyzed were subjected to the same packaging procedure but experienced different conditions of temperature and humidity during storage. Water sorption and the diffusive transfer of water and water vapor through the wall of the PET bottle may cause isotopic exchange between water within the bottle and water vapor in air near the PET-water interface. Changes of about +4 parts per thousand for delta(2)H and +0.7 parts per thousand for delta(18)O have been measured for water after 253 days of storage within the PET bottle. The results of this study clearly indicate the need to use glass bottles for storing water samples for isotopic studies. It is imperative to transfer PET-bottled natural waters to glass bottles for their use as calibration material or potential international working standards. Copyright (C) 2008 John Wiley & Sons, Ltd.
Resumo:
Carbon isotope ratio (CIR) analysis has been routinely and successfully used in sports drug testing for many years to uncover the misuse of endogenous steroids. One limitation of the method is the availability of steroid preparations exhibiting CIRs equal to endogenous steroids. To overcome this problem, hydrogen isotope ratios (HIR) of endogenous urinary steroids were investigated as a potential complement; results obtained from a reference population of 67 individuals are presented herein. An established sample preparation method was modified and improved to enable separate measurements of each analyte of interest where possible. From the fraction of glucuronidated steroids; pregnanediol, 16-androstenol, 11-ketoetiocholanolone, androsterone (A), etiocholanolone (E), dehydroepiandrosterone (D), 5α- and 5β-androstanediol, testosterone and epitestosterone were included. In addition, sulfate conjugates of A, E, D, epiandrosterone and 17α- and 17β-androstenediol were considered and analyzed after acidic solvolysis. The obtained results enabled the calculation of the first reference-population-based thresholds for HIR of urinary steroids that can readily be applied to routine doping control samples. Proof-of-concept was accomplished by investigating urine specimens collected after a single oral application of testosterone-undecanoate. The HIR of most testosterone metabolites were found to be significantly influenced by the exogenous steroid beyond the established threshold values. Additionally, one regular doping control sample with an extraordinary testosterone/epitestosterone ratio of 100 without suspicious CIR was subjected to the complementary methodology of HIR analysis. The HIR data eventually provided evidence for the exogenous origin of urinary testosterone metabolites. Despite further investigations on HIR being advisable to corroborate the presented reference-population-based thresholds, the developed method proved to be a new tool supporting modern sports drug testing procedures.
Resumo:
Carbon isotope ratios in marine carbonate rocks have been shown to shift at some of the time boundaries associated with extinction events; for example, Cretaceous/Tertiary and Ordovician/ Silurian. The Permian/Triassic boundary, the greatest extinction event of the Phanerozoic, is also marked by a large d13C depletion. New carbon isotope results from sections in the southern Alps show that this depletion did not actually represent a single event, but was a complex change that spanned perhaps a million years during the late Permian and early Triassic. These results suggest that the Permian/Triassic (P/Tr) extinction may have been in part gradual and in part 'stepwise', but was not in any case a single catastrophic event.
Resumo:
The Trepca Pb-Zn-Ag skarn deposit (29 Mt of ore at 3.45% Pb, 2.30% Zn, and 80 g/t Ag) is located in the Kopaonik block of the western Vardar zone, Kosovo. The mineralization, hosted by recrystallized limestone of Upper Triassic age, was structurally and lithologically controlled. Ore deposition is spatially and temporally related with the postcollisional magmatism of Oligocene age (23-26 Ma). The deposit was formed during two distinct mineralization stages: an early prograde closed-system and a later retrograde open-system stage. The prograde mineralization consisting mainly of pyroxenes (Hd(54-100)Jo(0-45)Di(0-45)) resulted from the interaction of magmatic fluids associated with Oligocene (23-26 Ma) postcollisional magmatism. Whereas there is no direct contact between magmatic rocks and the mineralization, the deposit is classified as a distal Pb-Zn-Ag skarn. Abundant pyroxene reflects low oxygen fugacity (<10(-31) bar) and anhydrous environment. Fluid inclusion data and mineral assemblage limit the prograde stage within a temperature range between 390 degrees and 475 degrees C. Formation pressure is estimated below 900 bars. Isotopic composition of aqueous fluid, inclusions hosted by hedenbergite (delta D = -108 to -130 parts per thousand; delta O-18 = 7.5-8.0 parts per thousand), Mn-enriched mineralogy and high REE content of the host carbonates at the contact with the skarn mineralization suggest that a magmatic fluid was modified during its infiltration through the country rocks. The retrograde mineral assemblage comprises ilvaite, magnetite, arsenopyrite, pyrrhotite, marcasite, pyrite, quartz, and various carbonates. Increases in oxygen and sulfur fugacities, as well as a hydrous character of mineralization, require an open-system model. The opening of the system is related to phreatomagmatic explosion and formation of the breccia. Arsenopyrite geothermometer limits the retrograde stage within the temperature range between 350 degrees and 380 degrees C and sulfur fugacity between 10(-8.8) and 10(-7.2) bars. The principal ore minerals, galena, sphalerite, pyrite, and minor chalcopyrite, were deposited from a moderately saline Ca-Na chloride fluid at around 350 degrees C. According to the isotopic composition of fluid inclusions hosted by sphalerite (delta D = -55 to -74 parts per thousand; delta O-18 = -9.6 to -13.6 parts per thousand), the fluid responsible for ore deposition was dominantly meteoric in origin. The delta S-31 values of the sulfides spanning between -5.5 and +10 parts per thousand point to a magmatic origin of sulfur. Ore deposition appears to have been largely contemporaneous with the retrograde stage of the skarn development. Postore stage accompanied the precipitation of significant amount of carbonates including the travertine deposits at the deposit surface. Mineralogical composition of travertine varies from calcite to siderite and all carbonates contain significant amounts of Mn. Decreased formation temperature and depletion in the REE content point to an influence of pH-neutralized cold ground water and dying magmatic system.
Resumo:
We combined structural analysis, thermobarometry and oxygen isotope geochemistry to constrain the evolution of kyanite and/or andalusite-bearing quartz veins from the amphibolite facies metapelites of the Simano nappe, in the Central Alps of Switzerland. The Simano nappe records a complex polyphase tectonic evolution associated with nappe stacking during Tertiary Alpine collision (D1). The second regional deformation phase (132) is responsible for the main penetrative schistosity and mineral lineation, and formed during top-to-the-north thrusting. During the next stage of deformation (D3) the aluminosilicate-bearing veins formed by crystallization in tension gashes, in tectonic shadows of boudins, as well as along shear bands associated with top-to-the-north shearing. D2 and D3 are coeval with the Early Miocene metamorphic peak, characterised by kyanite + staurolite + garnet + biotite assemblages in metapelites. The peak pressure (P) and temperature (T) conditions recorded are constrained by multiple-equilibrium thermobarometry at 630 +/- 20 degrees C and 8.5 +/- 1 kbar (similar to 27 km depth), which is in agreement with oxygen isotope thermometry indicating isotopic equilibration of quartz-kyanite pairs at 670 +/- 50 degrees C. Quartz-kyanite pairs from the aluminosilicate-bearing quartz veins yield equilibration temperatures of 645 +/- 20 degrees C, confirming that the veins formed under conditions near metamorphic peak. Quartz and kyanite from veins and the surrounding metapelites have comparable isotopic compositions. Local intergranular diffusion in the border of the veins controls the mass-transfer and the growth of the product assemblage, inducing local mobilization of SiO2 and Al2O3. Andalusite is absent from the host rocks, but it is common in quartz veins, where it often pseudomorphs kyanite. For andalusite to be stable at T-max, the pressure in the veins must have been substantially lower than lithostatic. An alternative explanation consistent with structural observations would be inheritance by andalusite of the kyanite isotopic signature during polymorphic transformation after the metamorphic peak.
Resumo:
Mineralogical, K-Ar, Rb-Sr and stable isotope analyses have been carried out on K-white micas from Helvetic Malm limestones in order to examine their evolution during very low- to low-grade Alpine metamorphism, associated with intense ductile deformation. Metamorphic temperatures were estimated al approximately 300-degrees-C from stable isotopes (quartz-calcite thermometry), occurrence of chloritoid, and `'epizonal'' illite crystallinity index. K-white micas consist of variable mixtures of 2M, phengite and muscovite, as revealed by detailed X-ray diffraction analyses using peak decomposition of the (060, 331) spectra. K-Ar apparent ages display a strong grain-size dependence in which mainly fine-grained size fractions (< 2 mum) record Alpine ages (37-15 Ma). However, these ages provide a relative rather than an absolute chronology of the diachronous Alpine metamorphic evolution of the Helvetic nappes. The resetting of the K-Ar isotopic system of K-white micas to Alpine metamorphic conditions reflects an apparent combination of crystallization/recrystallization and radiogenic Ar-40 diffusion loss. The oxygen isotope compositions of micas (+ 15 to + 22 parts per thousand) are intermediate between detrital and O-18-enriched values expected for micas neoformed within an abundant marine carbonate matrix. No isotopic equilibrium has been reached between calcite and micas. The variable depletion of hydrogen isotope compositions (- 126 to - 82 parts per thousand) is influenced by the interaction with organic matter under closed-system conditions. Organic matter, if not removed, may also represent a serious source of error in K-Ar age determination, by introducing radiogenic Ar-40 contamination. Sr-87/Sr-86 isotope ratios of micas range from 0.70879 to 0.70902 with one outlier at 0.71794. The low values reflect Sr exchange with calcite occurring during crystallization/recrystallization of micas under closed-system conditions.
Resumo:
Coarse-grained gabbros from two different localities in the Gets nappe (Upper Prealps) have been dated by U-Pb and Ar-40/Ar-39 isotopic analyses. Zircons from both gabbros gave identical concordant U-Pb ages of 166 +/- 1 Ma (Fig. 4). Amphibole from one of them gave an Ar-40/Ar-39 plateau age of 165.9 +/- 2.2 Ma (Fig. 5). This concordance implies that 166 +/- 1 Ma is the age of magmatic crystallization of these gabbros. The Gets wildflysch with its mafic and ultramafic lenses is an ophiolitic melange, that we infer to come from a proximal part of the accretionary prism at the foot of the active SE margin of the Piemont ocean. In this position we can expect to find remnants of the oldest parts of the Piemont oceanic crust. These are the first high-precision dates using modern techniques from an Alpine ophiolite and are in excellent agreement with the following: 1) The few, somewhat younger, reliable ages on ophiolites from the probable continuation of the Piemont basin into the Apennines and Corsica; 2) Recent data on the age of the first supra-ophiolitic sediments (Late Bathonian to Early Callovian radiolarites); 3) The structural and stratigraphic evolution of the Brianconnais (s.s.) domain, the future NW margin of the Piemont ocean. We note a remarkable coincidence, in Late Bajocian time, between: (A) the end of tensile fracturing in the Brianconnais continental crust; (B) the beginning of its subsidence; (C) the age of the Gets ophiolites. This coincidence is consistent with an ocean opening mechanism based on a combination of subhorizontal extension and thermally driven vertical movements of the lithosphere.
Resumo:
Seeds with a high concentration of P or Mo can improve the growth and N accumulation of the common bean (Phaseolus vulgaris L.), but the effect of enriched seeds on biological N2 fixation has not been established yet. This study aimed to evaluate the effect of seeds enriched with P and Mo on growth and biological N2 fixation of the common bean by the 15N isotope dilution technique. An experiment was carried out in pots in a 2 x 3 x 2 x 2 factorial design in randomized blocks with four replications, comprising two levels of soil applied P (0 and 80 mg kg-1), three N sources (without N, inoculated with rhizobia, and mineral N), two seed P concentrations (low and high), and two seed Mo concentrations (low and high). Non-nodulating bean and sorghum were used as non-fixing crops. The substrate was 5.0 kg of a Red Latosol (Oxisol) previously enriched with 15N and mixed with 5.0 kg of sand. Plants were harvested 41 days after emergence. Seeds with high P concentration increased the growth and N in shoots, particularly in inoculated plants at lower applied P levels. Inoculated plants raised from high P seeds showed improved nodulation at both soil P levels. Higher soil P levels increased the percentage of N derived from the atmosphere (%Ndfa) in bean leaves. Inoculation with the selected strains increased the %Ndfa. High seed P increased the %Ndfa in inoculated plants at lower soil P levels. High seed Mo increased the %Ndfa at lower soil P levels in plants that did not receive inoculation or mineral N. It is concluded that high seed P concentration increases the growth, N accumulation and the contribution of the biological N2 fixation in the common bean, particularly in inoculated plants grown at lower soil P availability.
Resumo:
Phengites from the eclogite and blueschist-facies sequences of the Cycladic island of Syros (Greece) have been dated by the in situ UV-laser ablation Ar-40/Ar-39 method. A massive, phengite-rich eclogite and an omphacite-rich metagabbro were investigated. The phengites are eubedral and coarse-grained (several 100 mum), strain-free and exhibit no evidence for late brittle deformation or recrystallization. Apparent ages in these samples range from 43 to 50 Ma for the phengite-rich eclogite and 42 to 52 Ma for the ompbacitic metagabbro. This large spread of ages is visible at all scales-within individual grains as well as in domains of several 100 mum and across the entire sample (ca. 2 cm). Such variations have been traditionally attributed to metamorphic cooling or the incorporation of excess argon. However, the textural equilibrium between the phengites and other high pressure phases and the subtle compositional variations within the phengites, especially the preservation of growth textures, alternatively suggest that the observed range in ages may reflect variations of radiogenic argon acquired during phengite formation and subsequent growth, thus dating a discrete event on the prograde path. This implies that the oldest phengite 40Ar/39Ar ages provide the best estimate of a minimum crystallization age, which is in agreement with recently reported U-Pb and Lu-Hf geochronological data. Our results are consistent with available stable isotope data and further suggest that, under fluid-restricted conditions, both stable and radiogenic isotopic systems can survive without significant isotopic exchange during subduction and exhumation from eclogite-facies P-T conditions. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
In the region of the Serra do Espinhaço Meridional, peat bog is formed in hydromorphic environments developed in sunken areas on the plain surfaces with vegetation adapted to hydromorphic conditions, favoring the accumulation and preservation of organic matter. This pedoenvironment is developed on the regionally predominant quartzite rocks. Peat bog in the Environmental Protection Area - APA Pau-de-Fruta, located in the watershed of Córrego das Pedras, Diamantina,Brazil, was mapped and three representative profiles were morphologically characterized and sampled for physical, chemical and microbiological analyses. The organic matter was fractionated into fulvic acid (FA), humic acids (HA) and humin (H). Two profiles were sampled to determine the radiocarbon age and δ13C. The structural organization of the three profiles is homogeneous. The first two layers consist of fibric, the two subsequent of hemic and the four deepest of sapric peat, showing that organic matter decomposition advances with depth and that the influence of mineral materials in deeper layers is greater. Physical properties were homogeneous in the profiles, but varied in the sampled layers. Chemical properties were similar in the layers, but the Ca content, sum of bases and base saturation differed between profiles. Contents of H predominated in the more soluble organic matter fractions and were accumulated at a higher rate in the surface and deeper layers, while HA levels were higher in the intermediate and FA in the deeper layers. Microbial activity did not vary among profiles and was highest in the surface layers, decreasing with depth. From the results of radiocarbon dating and isotope analysis, it was inferred that bog formation began about 20 thousand years ago and that the vegetation of the area had not changed significantly since then.
Resumo:
The carbon isotopic signature of carbonates depends on secular variations of organic carbon and carbonate carbon production/burial rates. A decrease in carbonate productivity makes the organic/carbonate carbon ratio unstable up to the point that even minor variations in the organic carbon reservoirs can provoke carbon isotopic shifts. The delta(13)C positive shifts of the middle Carixian (early Pliensbachian) and the early Bajocian recorded in the Umbria-Marche-Sabina domain represent a good example of this mechanism. Both sedimentology and lithostratigraphy of pelagic platform-basin carbonate systems in this area show that important changes in the source of carbonates correspond to the observed isotopic shifts. The middle Carixian event is in fact well correlatable to the drastic reduction of benthic carbonate production on rift-related intrabasinal highs, which then became pelagic carbonate platforms. The early Bajocian event is concomitant with the beginning of a long hiatus on the pelagic carbonate platforms and with a drop of the biodiversity of calcareous organisms followed by the onset of biosiliceous sedimentation in basins. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
This study provides an organic carbon stable isotope (delta(13)C(org)) record calibrated with detailed ammonite biostratigraphy, following the end-Triassic biological crisis. Precise correlation between this crucial fossil group and the delta(13)C(org) record is key to understanding feedbacks between biological and environmental events following mass extinction. The latest Triassic and Hettangian delta(13)C(org) record shows several negative and positive excursions. The end-Triassic negative shift coinciding with the mass extinction interval is followed by a positive excursion in the earliest Hettangian Psiloceras spelae beds, which marks the onset of recovery in the marine ecosystem. This positive trend is interrupted by a second negative delta(13)C(org) excursion in the P. pacificum beds related to a minor ammonite extinction event. This pattern of the delta(13)C(org) curve culminates in the uppermost Hettangian Angulata Zone major positive excursion. This indicates that both the ecosystem and the carbon cycle remained in a state of perturbation for at least 2 Ma, although the recovery of some pelagic taxa already began at the base of Jurassic. The early and late Hettangian positive delta(13)C(org) excursions have been confused in several recent papers. Here, we show that during the Hettangian there are indeed two distinct positive delta(13)C(org) excursions. Phases of anoxia and further pulses of Central Atlantic Magmatic Province volcanism during the Hettangian might have inhibited the full recovery for that interval of time. The main Liasicus-Angulata organic positive CIE (carbon isotope excursion) during the Late Hettangian might be related to gradual decreasing of pCO(2) due to protracted high organic burial, and coincides with a second phase of recovery, as indicated by a pulse of ammonoid diversification.